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Abstract 

The work described in this report details the application of extended 
Kalman filtering to estimating the Space Shuttle Propulsion performance, i.e. 
specific impulse, from flight data in a post-flight processing computer 
program. The flight data used includes inertial platform acceleration, SRB 
head pressure, SSME chamber pressure and flow rates, and ground based radar 
tracking data. The key feature in this application is the model used for the 
SRB’s, which is a nominal or reference quasi-static internal ballistics model 
normalized to the propellant burn depth. 
propellant burn depth are included in the filter model to account for real- 
time deviations from the reference model used. Aerodynamic, plume, wind and 
main engine uncertainties are also included for an integrated system model. 
Assuming uncertainty within the propulsion system model and attempts to 
estimate its deviations represent a new application of parameter estimation 
for rocket powered vehicles. 
estimation approach to several missions show good quality propulsion 
estimates. 

Dynamic states of mass overboard and 

Illustrations from the results of applying this 
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1. Introduction 

Volume I of this technical report summarizes the results of the 

Propulsion Estimation Development Verification performed under contract NAS8- 

36152 from March 1985 through January 1989. 

program developed under a previous contract, NAS8- 35324 [ 11 ' , was modified to 
include improved models for the Solid Rocket Booster (SRB) internal 

ballistics, the Space Shuttle Main Engine (SSME) power coefficient model, the 

vehicle dynamics using quaternions, and an improved Kalman filter algorithm 

based on the U-D factorized algorithm. As additional output, the estimated 

propulsion performances, Isp's, for each device are computed with the 

associated 1-sigma bounds. 

in graphical plots. 

During this period, a computer 

The outputs of the estimation program are provided 

Since the previous program developments were based on using synthetic 

data, this verification effort uses real data. To accomplish this 

verification with real data, several additional programs were required to 

convert the real test data into data compatible with the usage in the 

estimation programs. In all, there are six additional preprocessing programs 

developed that also provide graphical output plots of the data for visual 

review prior to use. 

pressurant volumetric flows into mass flows, units conversion for 

This preprocessing includes converting main engine 

'* numbers in brackets refer to the corresponding reference located in the 
REFERENCES 

1 



ROGERS ENGINEERING & ASSOCIATES 

meteorological data, extracting selected ground radar tracking data from those 

available on the recorded magnetic tape, and providing preprocessed vehicle 

accelerations, attitudes and rates for later use in the propulsion and BET 

estimation programs. 

The results obtained from the propulsion estimation programs are 

consistent with those obtained by using alternative methods. However, this 

process is an integrated methodology based on Kalman filtering theory. 

An additional effort was expended to examine the use of the estimation 

approach to evaluating single engine test data. 

for the SSME used in the PFILTER program. The same Kalman f i l tering 

algorithms c a e  also used. The results from this effort [ 2 ]  showed that the 

linear algebraic power gain law model exhibits little sensitivity to model 

deviations and possesses little ability to correct for these model errors. 

Additionally, this model was used in an attempt to extract modeling 

parameters, coefficients of the power gain model. This effort also 

demonstrated little ability to estimate these parameters due to the limited 

measurements assumed available. These results used a single engine’s flight 

data since ground data was not available. 

This approach used the model 

In addition to the propulsion estimation program PFILTER, a program has 

been developed to produce a best estimate of trajectory (BET). The program, 

LFILTER, also uses the U-D factorized algorithm form of the Kalman filter as 

in the propulsion estimation program PFILTER. 

are common between the programs. The BET system model is that of an 

inertially stabilized inertial measurement unit and the model is a linear 

Several of the library routines 
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dynamical system with additive system errors as contrasted with the nonlinear, 

equations of motion, dynamical model used in the PFILTER program. The PFILTER 

program is based on the extended Kalman filtering approach, while the LFILTER 

is based on a linearized Kalman filter. 

routine based on the Rauch-Tung-Striebel (RTS) algorithm. This smoothing 

routine improves the BET results by eliminating the filter induced time shift 

or lag, and by improving the state estimates and reducing the associated 

uncertainties for those estimates. 

preprocessing program to improve the quality of some of the inputs used in the 

propulsion estimation program. 

The BET program also uses a smoothing 

This BET program is also used and a 

The necessary definitions and equations explaining the Kalman filtering 

The models used approach for the PFILTER program are presented in section 2 .  

for this application are reviewed in section 3 for the dynamics and 

measurements. 

operation is presented in section 5. Conclusions and recommendations are 

presented in section 6 .  

The program description is presented in section 4. The program 

The preprocessing programs are described in Appendix A. The program 

which produces the output plots is described in Appendix B. Appendix C 

describes the BET LFILTER and RTSSMO filtering/smoothing programs 

respectively. 

manipulations and coordinate conversions. Appendix E contains the definition 

of coordinate frames used in these programs. 

Appendix D describes the library routines used for matrix 

Volume I1 contains the program listings. 

3 
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2. Kalman Filtering Equations/State Elements 

I 
I 
1 
1 

The program PFILTER is based on the structure and operation of a Kalman 

filter. 

described by a dynamical process. 

additive disturbances (noise), and by known inputs (controls). This process 

can be formulated into a state vector model given as 

Within this structure and operation, a system is assumed to be 

This process may also be "driven" by 

where the dynamics of the state vector, 8 ,  is a nonlinear function of itself, 

the control inputs, g, and time, t. The additive disturbance vector, y(t), is 

assumed to be a zero mean uncorrelated gaussian noise process. 

disturbance were non-zero mean, additional elements are added to the state 

vector, 11, to accommodate biases associated with the non-zero mean 

disturbances. These disturbances' statistical properties are described by 

If this 

I 
I 
u 
1 
8 

where E[] and Cov[] denote the expected value (mean) and covariance 

respectively, and the superscript T denoted the matrix transpose operation. 

Since the assumption of gaussian processes is made, the properties in (2 )  are 

sufficient to describe the disturbances' statistical properties. 

5 
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At discrete time instances, tk, measurements are available that are 

functionally related to the state vector, 3. 

can be represented by a nonlinear function of the state vector. These 

measurements are imperfect and are assumed to be corrupted by additive 

disturbances (noise). These disturbances are also assumed to zero mean 

uncorrelated gaussian sequences. 

In general, these measurements 

The measurements are represented by 

The statistical properties of the corrupting noise, s, are described by 

( 4 )  

These equations and the extended Kalman filter algorithms are summarized in 

Table 2.-1 from [3]. In addition to the process and measurement noise 

definitions in (2 )  and ( 4 ) ,  the initial state estimates are assumed to be 

governed by a gaussian distribution and the process noise (2) and measurement 

noise ( 4 )  are independent. 

6 
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Table 2. -1 

Extended Kalman Filter Algorithm 
( continuous time - discrete measurements ) 

System Model 

Initial Conditions z(0) = N[&,P,I 

Other Assumptions E[w(~)%~] = 0 for all t and k 

State Estimate 
Propagation 

Error Covariance 
Propagation 

1 

Definitions 

7 
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The processing flow of the Kalman filter algorithm is one of propagating 

the state estimate from the previous measurement time, or initial state, up to 

the next measurement time instant, tk. At the measurement time, each 

measurement available at that time is processed. The time propagation 

requires the integration of the state vector estimates and corresponding error 

covariance matrix. The state estimates and error covariance matrix are 

updated as each of the measurements are processed sequentially. At the 

conclusion of the measurement processing, for the time instant tk, the 

resulting state estimates and error covariance matrix elements are used to 

reinitialize the state vector and covariance matrix integration variables f o r  

the time propagation up to the next measurement time instant. 

The following matrices are defined which aid in assessing the quality of 

the filter's output results. The error covariance matrix is defined as the 

covariance of the error in the state estimate as 

where 

The residual is defined as 

(5) 

(7 )  

8 
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The residual covariance, or variance since the measurements are processed 

sequentially, is defined as 

The quality of the filter's outputs can be determined from these two 

The error covariance should be relatively small compared to the matrices. 

state estimate's value indicating low uncertainty associated with the estimate 

values. The residual variance should be zero mean and uncorrelated. If the 

system and measurements were linear and the noise processes were gaussian, the 

residual variance is theoretically zero mean and gaussian. 

desired properties that should be exhibited by the filter's outputs. 

These are the 

This algorithm is applied to a system described by vehicle equations of 

motion describing position, body velocity and quaternions representing 

attitudes. The position is referenced in B boost reference inertial 

coordinate frame (see Appendix E or reference 4 ) .  These equations of motion 

are forced by the Space Shuttle Main Engines (SSME), the Solid Rocket Boosters 

(SRB),  aerodynamic and plume forces, and winds. Each of these are described 

by mathematical models representing the nominal or reference conditions. 

The state vector describing the system is composed of the vehicle motion 

variables and deviations in the forcing functions above. Additionally, bias 

states are included for the measurements described below. The state vector 

elements for this application are summarized in Table 2 . - 2 .  

9 
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The objective of the propulsion estimation program is to determine the 

propulsive contributions and to distinguish them from other forces on the 

vehicle. 

filter algorithm. 

pressurant flows and fuel flow characteristics, SRB head pressure, IMU 

accelerometer, and radar azimuth, elevation and range measurements. These 

measurements are listed in Table 2.-3. 

To accomplish this objective, measurements are selected to aid the 

Measurements consisting of SSME chamber pressure, 

These measurements are processed one at a time; sequentially. Prior 

application [l] used the Kalman filter covariance update algorithm presented 

in Table 2.-1. This application resulted in numerical problems. As a result, 

this effort required the use of a factorized algorithm. The U - D  factorized 

algorithm from [ 5 ]  was selected. This algorithm is based on the covariance 

update equations presented in Table 2.-1; however, the covariance matrix is 

expressed as the product of three matrices as 

P = UDUT (9) 

The resultant factorization yields superior numerical qualities in providing 

equivalent double precision accuracy while using single precision programming 

providing less numerical sensitivity, and providing greater computational 

speed than other less sensitive algorithms. 

I 
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Table 2. -2 

State Vector Elements Modeled in PFILTER 

Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 - 30 
31-40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5 1  
52 
53 
54 
55 

56-58 
59 - 6 1  

Units 

ft 
ft 
ft 
f t/sec 
f t/sec 
ft/sec 

- 
- 
- 
- 

lb 

lb/in2 
lb/sec 
lb/sec 
gal/min 
lb/in2 
deg R 
lb/ in2 

- 

* 
* 
- 
- 
- 

lb 
lb 
lb 
f t/sec 
ft/sec 
f t/sec 
ft/sec2 
ft/sec2 
ft/sec2 
deg 
deg 
ft * 
* 

Description 

x-position in boost reference inertial frame (BR) 
y-position in boost reference inertial frame 
z-position in boost reference inertial frame 
u-component of body referenced velocity (B) 
v-component of body referenced velocity 
w-component of body referenced velocity 
first quaternion element 
second quaternion element 
third quaternion element 
fourth quaternion element 

not used 

main engine 1 - 
main engine 1 - 
main engine 1 - 
main engine 1 - 
main engine 1 - 
main engine 1 - 
main engine 1 - 
main engine 1 - 
main engine 1 - 

mass overboard 
mixture ratio 
chamber pressure deviation 
oxygen pressurant deviation 
hydrogen pressurant deviation 
fuel volume flow bias 
fuel flow pressure bias 
fuel flow temperature bias 
chamber pressure bias 

main engine 2 repeat for main engine 1 14-22 
main engine 3 repeat for main engine 1 14-22 
x-(B) component aerodynamic force deviation 
y-(B) component aerodynamic force deviation 
z-(B) component aerodynamic force deviation 
x-(B) component plume force deviation 
y-(B) component plume force deviation 
z-(B) component plume force deviation 
north component wind velocity deviation 
east component wind velocity deviation 
down component wind velocity deviation 
x-(BR) component accelerometer bias 
y-(BR) component accelerometer bias 
z-(BR) component accelerometer bias 
radar 1 - azimuth bias 
radar 1 - elevation bias 
radar 1 - range bias 
radar 2 repeat for radar 1 53-55 
radar 3 repeat for radar 1 53-55 

11 
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Table 2.-2 (continued) 

State Vector Elements Modeled in PFILTER 

Element Units Description 

6 2  lb left motor - mass overboard 
6 3  in left motor - burn web thickness 
6 4  ** left motor - burn rate coefficient deviation 
65 left motor - nozzle coefficient deviation 
66 lb/in2 left motor - head pressure measurement bias 

67-71 * right motor repeat for left motor 62-66 

* same units as for repeated elements 
** (in/sec)/( (lb/in2)**(burn rate exponent)) 

12 
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Table 2.-3 

Measurement Vector Elements Modeled in PFILTER 

Element 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 

19-24 

a 

13-18 

25 
26 
27 

28-30 
31-33 

34 
35 

Units 

ft/sec2 
ft/sec2 
ft/sec2 

lb/in2 
lb/sec 
lb/sec 
gal/min 
lb/in2 
deg R * 
* 
d=g 
deg 
ft * 
* 
lb/in2 
lb/in2 

Description 

x-(BR) component acceleration 
y-(BR) component acceleration 
z-(BR) component acceleration 

not used 

main engine 1 - chamber pressure 
main engine 1 - oxygen pressurant flow 
main engine 1 - hydrogen pressurant flow 
main engine 1 - fuel volume flow 
main engine 1 - fuel flow pressure 
main engine 1 - fuel flow temperature 
main engine 2 repeat for main engine 1 7-12 
main engine 3 repeat for main engine 1 7-12 
radar 1 - azimuth 
radar 1 - elevation 
radar 1 - range 
radar 2 repeat for radar 1 25-27 
radar 3 repeat for radar 1 25-27 
left motor head pressure 
right motor head pressure 

13 
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3 .  System Model and Measurements 

As described in the previous section, this application uses the 

equations of vehicle motion as forced by propulsive, aerodynamic, plume and 

wind effects. 

processed by the filter algorithm. 

acceleration, and position as indicated by radar tracking. In this section, 

the equations describing the equations of motion, models for the forcing 

elements, and measurements will be presented. Later in the program 

descriptions presented in section 4., each of these models will be discussed 

in more detail in the routines in which they are implemented. 

The evolution of this motion is monitored by measurements 

These measurements include propulsive, 

3.1 System Model 

The system model includes the equations of motion, models for 

aerodynamic forces, plume forces, winds as they impact aerodynamic and plume 

forces, SSME and SRB thrust and mass overboard. 

Kalman filtering algorithm, these models are sufficient to provide a 

reasonable approximation to the trajectory profile. 

If left uncorrected by the 

The modeling approach used in this development is an extension of those 

presented in references [ 6 ]  and [7]. The extensions include; boost reference 

coordinate frame for position, plume forces, propulsion parameters and 

measurements, and using the U-D factorization form of the Kalman filter. 

15 
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3.1.1 Equations of Motion 

The equations of motion consist of position in boost reference frame, 

velocity in body frame, and body attitude relative to boost reference frame as 

derived from quaternions. 

The vehicle position is maintained in the boost reference inertial 

coordinate frame (BR). This position is governed by the following 

where 

x (BR) 

BRc'B) 

v(B) - 

- BR position vector 
= transformation matrix from body (B) frame to BR frame 

- velocity vector in body frame. 

The vehicle velocity is formulated in body frame. This velocity is 

determined from 

where 

- dynamic pressure qdm 

A - aerodynamic reference area 
Ef 

fT(B) 

- aerodynamic force coefficient vector in body frame 
- thrust force vector in body frame 

16 
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ZP 
m - instantaneous vehicle mass 
BCEP 

gCEP) 

- w - body rotation vector relative to boost reference frame. 

- plume force vector in body frame 

- transformation matrix from earth fixed (EF) to body frame 
- gravity vector in earth fixed frame 

The vehicle mass in the difference between initial mass and the sum of mass 

overboard of each of the thrusting devices, SSME‘s and SRB’s. 

The vehicle attitude relative to the boost reference frame is governed 

by 

where 

9 

f[p,q,r] - matrix whose elements are from body rate gyros. 
- quaternion vector composed of 4 elements 

3.1.2 Aerodynamic Forces 

These forces are functions of vehicle attitude relative to the total 

velocity vector and the total vehicle speed. These angles are defined in 

Appendix E. The following equations define these angles in terms of body 

velocity, xCB’, from equation (11) and wind velocity, s, obtained by 
meteorological measurements. 

17 
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where 

Yr 

YW (u) 

BCu 

L - magnitude of wind relative velocity; speed. 
a 

B 

vri 

= wind relative velocity vector 

- wind velocity in local level coordinates 
- transformation matrix from local level to body frame 

= angle of attack of body relative to total velocity vector 

= angle of side slip of body relative to total velocity vector 

= ith component of wind relative velocity vector. 

The aerodynamic force coefficients are exprzssed as linear coefficients 

of powers of these angles. 

are included. 

Vehicle symmetry properties govern which powers 

The aerodynamic coefficients are given as 

18 
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where 

C A 

Cn - normal force coefficient 
CY - side force coefficient. 

- axial force coefficient 

the force coefficient vector, c,, in equation (11) is formed from these 

coefficients as 

'CA 

CY 

- Cn 

Each of the power coefficients given in equations (17), (18), and (19) iire 

tabulated as functions of Mach number. 

3.1.3 Plume Forces 

The plume forces are also given as functions of the angle of attack and 

side slip. 

power level and in situ dynamic pressure. 

pressure effects are expressed as 

Additional corrections are applied as function of main engine 

The power level, angle and dynamic 

APL 1.09 - PL 

fAp - K, AP,~ + K, A P ~  + 1 

fa@ = K~ p2 + K, a + 1 

% qdyn 1 qref 

19 
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where 

PL 

K i  = empirical correction coefficients 

% 

= current main engine commanded power level 

- ratio of in situ dynamic pressure to reference value. 

The plume force vector, f p ,  is formed from these corrections as 

where 

AF, 

FAorb - orbiter axial force 
AFN - incremental normal force. 

- incremental axial base force 

Each of these and the K ' s  in equations (21) through (24) are tabulated as 

functions of altitude. 

3.1.4 Main Engine Thrust Forces 

Each of the main engine's ( and SRB's ) thrust is transformed from its 

centerline, through which the thrust is assumed to act, to the vehicle's body 

frame using the nozzle deflections and mount structure angles. This 

transformed thrust is then summed to form the total thrust as 
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n 
fTiCL 

n 
-T f (B)  = x 0 c BCj,CL gTi'n) 

i=l i-1 
0 

where 

fTiCL = individual main engine ( and SRB's ) thrust 

BCCL = transformation matrix from center line to body. 

The thrust is corrected for atmospheric ambient pressure at the 

vehicle's altitude by 

fTiCL fTi vac - ps 

where 

fTi 

Aei 

- each main engine's vacuum thrust 
= each main engine's nozzle exit area. 

Each of the main engine's thrust is based on the individual engine's tag 

value, at 100% power level test stand data, plus a correction based on the 

current power level's and the 100% power level's nominal engine thrust. 

The weight overboard for each of the main engines is the sum of the fuel 

and oxidizer less the gaseous oxygen and hydrogen pressurant weight flow. 

Fuel and Oxidizer weight flow rate's models are identical to the thrust 

described above. Pressurant flow rates are based on a nominal engine's 

characteristics. 
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3.1.5 SRB Thrust Forces 

The rocket booster's thrust is transformed into body frame from the 

nozzle center line as in the main engine's. Each rocket booster's thrust is 

based on a quasi-static web burn rate model plus corrections derived from 

prior post flight data analyses. The thrust is given by 

f ~ a  cm CT 4 PO TSF + 

where 

Cm = nozzle coefficient 

CT - thrust coefficient 
AT = nomle &rea 

PO = nozzle entrance pressure 

T,, - derived thrust scaling factor (function of web depth) 
ATm = derived thrust correction. 

The nozzle entrance pressure, Po, is computed from the following 

1 - - - - -  
c* pp a AB (1-n) 

Po = - - - - - - - - - -  
g AT 

where 

C* = characteristic exhaust velocity 

P P  - propellant density 
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a 

AB 

g - gravitational acceleration 
AT - nozzle throat area. 
n 

= pressure scaled propellant burn rate coefficient 

= instantaneous propellant burn area 

= propellant burn rate exponent. 

The mass overboard is given as 

m, - PP 7 AB 

r - a Pon 

E 
E 

1 
1 23 
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3.2 Measurement Equations 

The measurements used in the Kalman filtering algorithm were selected to 

maximize the likelihood of discriminating between aerodynamic/plume and 

propulsive forces. External measurements, such as ground radar tracking and 

IMU accelerations, provide redundant information that characterized the 

vehicle motion and provide the opportunity to characterize each others' 

biases. Internal measurements, such as SRB head pressure and SSME flow rates, 

add to the redundancy by restricting the contributors to those measurements 

from being adjusted by the filter algorithm to account for vehicle motion 

deviations. 

The measurements described in the folltzirig included radar tracking, IMU 

accelerations, SSME chamber pressure and flows, and SRB head pressure. 

3.2.1 Radar Tracking 

The measurement equations are identical to those described in section 

C.2.2 for the BET linearized Kalman filtering algorithm. 

coordinate frames are identical for the propulsion estimation program and the 

BET program; boost reference inertial. However, in this case, only three 

radars are used in the tracking. 

measurements carry less weight as other measurements, i.e. accelerometer; 

therefore, mainly provide a gauge on the performance of the filter. 

The position 

The updates provided by the radar 
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3.2.2 IMU Accelerations 

The accelerations are assumed measured in the boost reference frame; 

sensed. 

propulsion, plume and coriolis forces. Additional error is assumed to permit 

acceleration biases and additive random noise. 

These accelerations are modeled as contributions of aerodynamic, 

The measured acceleration in sensed frame is expressed as 

where 

'CB 

- w 

&(B) 

&g(B) - body frame coordinates of vehicle center of gravity 
h a  (') 

x a  ('1 

- body to sensed frame transformation matrix 
- body rotation rate from body rate gyros 
- body frame coordinates of IMU location 

- acceleration bias vector 
- acceleration measurement noise. 

Other terms involving aerodynamic, thrust and plume forces are defined in 

section 3.1. 

3.2.3 SSME Measurements 

The main engine measurements include chamber pressure, gaseous 

pressurant flow rates and fuel flow rate. The nominal chamber pressure is 
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determined by the pressure associated at the rated power level for each 

individual engine multiplied by the commanded power level. The gaseous 

pressurant flow rates are determined from the nominal flow rates associated 

with the commanded power level. 

3.2.4 SRB Measurements 

The solid rocket booster measurement is the head pressure, at the 

opposite end from the exit nozzle. 

nozzle pressure equation (29) as 

This measurement model is formed from the 

PO A , g  2 L3 

c* AB VP 

I - -  ( 1 + J( 1 + 16zRT(----) ) - -  ) ( 3 3 )  

where 

R - universal gas constant 
T = gas absolute temperature 

L 

VP = corresponding port volume 

= internal propellant grain port length 

Port volume in the above equation is obtained from internal ballistics 

prediction programs and is adjusted as necessary to match the corresponding 

head pressure predictions. 
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4 .  Propulsion Estimation Program - PFILTER 

This section describes the propulsion estimation program PFILTER. 

PFILTER, which mechanizes the Kalman filter algorithm and is written in the 

FORTRAN77 standard, provides estimates for the Shuttle’s boost phase flight. 

This program is structured in parallel with the Kalman filter algorithm 

presented in Table 2.-1. There are routines that form the state vector time 

derivatives, and there are routines, in some cases the same routines, that 

form the measurements. The organization of the program’s routines is shown in 

Figure 4.-1. 

The program functions as follows. The main routine, FILTER, controls 

the operational flow within the structure of the Kalman filter algorithm. 

opens and reads the data files, initially zeros arrays used later, ZERO, and 

initializes arrays, INITIL, based on data contained with the BLKDAT block data 

routine. The formation of the time derivatives, PROPAF, and their 

integration, RK4FIL, up to a measurement time is controlled in FILTER. At the 

measurement time, the measurement data is input by the GETDAT routine. For 

those measurements to be processed, the UPDATE routine calls the routine that 

forms the measurement and accomplishes the Kalman filter measurement update. 

Most of the routines just mentioned also call additional routines that contain 

the modeling for the function to be performed. 

It 

27 



ROGERS ENGINEERING & ASSOCIATES 

r 4 

PFILTER 
i 

BLOCK DATA 

INITIL 
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t 
RK4FIL PROPAF 

XDVEC 
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I NAS SRB 
NAERO 

GETDAT 

ACCEL 
S SME 
s SRB 
RADAR 

LINFB 1 

Figure 4.-1: PFILTER Program Flow Chart 
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Each of these routines, their function and the equations they form, will 

e discussed in the subsequent subsections. 

mathematical notation and the symbology used in the FORTRAN code will also be 

presented. 

The correspondence between the 

Supporting the operation of this program are several input data files. 

These data files are produced by the preprocessing programs mentioned earlier. 

Also, this program produces an output file for plotting to assess the quality 

of programs other outputs. 

resulting outputs. 

discussed in Appendix A. 

The plotting program then postprocesses the 

These preprocessing and postprocessing programs are 
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4.1 Program FILTER 

This main routine controls the Kalman filter flow as previously 

described as well as handling the input and output of data files, and array 

initializations. 

Three data files are input. These are: 

Data File Unit Number 

1 
2 
3 

Data File Name 

CONTRL.DAT 
REALMEA. DAT 
METDAT.DAT 

The first, CONTRL.DAT, contains the vehicle control input data. This data is 

as follows: 

Symbol 

TTIME 
TRLD , TTLD 
TRRD , TTRD 
TPL 
TPLl , TYLl 
TPL2, TYL2 
TPL3, TYL3 
TRATER 
TRATEP 
TRATEY 
TROLL 
TPITCH 
TYAW 

Common 

NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 
NOZDAT 

Units 

sec 
in 
in 

Description 

time corresponding to control data 
left hand SRB rock and tilt displacements 
right hand SRB rock and tilt displacements 
SSME power level command 
SSME-1 pitch and yaw gimbal angles 
SSME-2 pitch and yaw gimbal angles 
SSME-3 pitch and yaw gimbal angles 
vehicle roll rate with respect to BR 
vehicle pitch rate with respect to BR 
vehicle yaw rate with respect to BR 
vehicle roll attitude with respect to BR 
vehicle pitch attitude with respect to BR 
vehicle yaw attitude with respect to BR 
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These data are used in routine CONTRL to compute the specific time point 

control values as determined by a linear interpolation, performed by INTRP1. 

The second data file, REAZMEA.DAT, is read in by GETDAT. This file 

contains the measurements from the accelerometers, main engines, solid rocket 

motor head pressures, and ground tracking radars. Each set of measurements, 

i.e. accelerometers, are communicated via common to the appropriate update 

routines and will be discussed later. 

The third data set, METDAT.DAT, contains tables of meteorological data 

at one thousand foot increments. The data is as follows: 

Symbol Common Units Description 

TALT SWIND ft altitude values for corresponding data 
TSRHO SATMOS lb sec2/ft4 atmospheric density 
TSP SATMOS lb/f t2 static pressure 
TSSUND SATMOS f t/sec speed of sound 
Tvwx SWIND f t/sec x component, north, of wind velocity 
TVWY SWIND f t/sec y component, east, of wind velocity 

These data are used in routine ATMOS to determine the values at a specific 

altitude based on a linear interpolation by the INTRPl routine. 

The routine ZERO is called to zero arrays used for integration 

variables. INITIL initializes the state variables, i.e. position, velocity, 

and the values of the error covariance matrix used in the Kalman filter 

algorithm. 

PROPAF forms the time derivatives of the state variables. Included in 

the state variables are; position, velocity, quaternions, SRB burn web 

thickness, mass overboard, and the upper triangular elements of the error 
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covariance matrix since this matrix is symmetric. These derivatives are 

integrated numerically using a fourth order Runge-Kutta algorithm mechanized 

in the RK4FIL routine. 

If the filter time does not exceed the specified maximum time, TMAX 

contained in the BLKDAT routine, the equations are integrated up to the next 

measurement time. At this instant, the measurement update is performed. The 

results are used to reinitialize the state variables and error covariance 

matrix elements for integration to the next measurement time. This process 

continues until the maximum time is exceeded. When this occurs, the output 

f i l e ,  FILOUT.DATA, is closed. 

32 

I 
I 
1 
I 
I 
1 
I 
I 
II 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 



~ 

I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ROGERS ENGINEERING & ASSOCIATES 

4.2 BLKDAT Routine 

The BLKDAT routine contains data to support the program flow control, 

i.e. TMAX for the maximum time, and modeling data that may frequently change 

to refine the filter's performance. 

functional aspect of the system, i.e. mass properties, is contained within 

data statements for that function within its corresponding routine, i.e. 

NMASS. As a guide to determining where data resides, parameters that are 

frequently changed and program control data are located in BLKDAT. These 

include propulsion modeling data for the SRB's and SSME's. 

Specific modeling data associated with a 

The 

Symbol 

ISTAGE 
TMAX 
HSTEP 
TSAMP 
TSTART 
TRINT 
ITYPE 
NMEAS 
IMEAS 
IATMOS 
NALT 
NS 
NPAR 
NRMEAS 
IS SME 
ISRB 
IAERO 
I PLUME 
IWIND 
JACB 
JRDR 

following program control data are specified in BLKDAT. 

Common 

STAGE 
TIMDAT 
TIMDAT 
TIMDAT 
TIMDAT 
TIMDAT 
TYPE 
NMEASR 
NMEASR 
SATMOS 
SWIND 
LINFMT 
LINFMT 
LINHMT 
I PARAM 
I PARAM 
IPARAM 
IPARAM 
I PARAM 
I PARAM 
I PARAM 

Description 

identifier for stage 1 or 2 data selection 
maximum filter time after liftoff 
numerical integration step size 
measurement sample time increment 
filter start time after liftoff 
time to start body rate integration 
<1 for synthetic data generation 
number of measurement types, i.e. radar 
specific measurement the types available 
<1 for standard atmospheric model data 
number of tabulated altitude's 
number of vehicle motion states 
number of parameter state elements 
total number of measurements (all types) 
-1 for including SSME parameters 
-1 for including SRB parameters 
-1 for including aerodynamic parameters 
-1 for including plume parameters 
-1 for including wind parameters 
-1 for including accel. bias parameters 
-1 for including radar bias parameters 
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Data that specifies the geometrical relationships for the thrust points 

for each thrusting device, location of the IMU for the accelerometer, and data 

which represents structural deformation for the main engine mount structure 

due to load are specified in BLKDAT. These data and other geometrical data 

are : 

Symbol 

RS 
RA 
RT1 
RT2 
RT3 
RT4 
RT5 
TSDBTP 

TSDBTY 

TSDBAP 

TSDBAY 

AREA 
DIA 
PSMEPS 
PSRBPS 

Common 

LAYOUT 
LAYOUT 
LAYOUT 
LAYOUT 
LAYOUT 
LAYOUT 
LAYOUT 
STRUCT 

STRUCT 

STRUCT 

STRUCT 

GEODAT 
GEODAT 
GEODAT 
GEODAT 

Units 

ft 
ft 
ft 
ft 
ft 
ft 
ft 
deg 

deg 

f t2 
ft 
f t2 
f t2 

Description 

body coordinates of IMU location 
body coordinates of aerodynamic reference 
body coordinates of SSME-1 
body coordinates of SSME-2 
body coordinates of SSME-3 
body coordinates of left hand SRB 
body coordinates of right hand SRB 
pitch structure deflection coefficients 
due to power level and gimbal angles 
yaw structure deflection coefficients 
due to power level and gimbal angles 
pitch structure deflection coefficients 
due to vehicle acceleration 
yaw structure deflection coefficients 
due to vehicle acceleration 
aerodynamic reference area 
aerodynamic reference length 
main engine exit area 
SRB exit area 

Earth model specific data and initial vehicle orientation data are as 

follows : 

Symbol Common 

RE EDATA 
FLAT EDATA 
OMEGE EDATA 
XMU EDATA 
x J 2  EDATA 

Units Description 

ft earth radius at the equator 

r ad/s e c earth angular rotation rate 
f t3/sec2 earth gravitational parameter 

- earth model flattening factor 

- earth oblate spheroid gravity parameter 
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CRAD EDATA de g/r ad conversion from degrees to radians 
CUENED ASTRON - transformation matrix from UEN to NED 
CBRIB ASTRON - transformation matrix from BR to body 

Launch points and radar site coordinates defined for the earth model 

are : 

Symbol Common 

OLATD LAUCOR 
OLONG LAUCOR 
OHT LAUCOR 
RLAT RDRDAT 
RLONG RDRDAT 
RHT RDRDAT 
NRDR RDRDAT 

Units Description 

launch point geodetic latitude 
launch point longitude 
launch point altitude 
radar site geodetic latitude 
radar site longitude 
radar site altitude 
number of radar sites used 

Stage 1 and 2 initial mass and stage 2 state vector data are: 

Symbol Common Units Description 

XMASSI IPROPR lb stage 1 initial weight 
xMAss2 I PROPR lb stage 2 initial weight 
R2 STGDAT ft stage 2 initial position in BR f r a m e  
VB2 STGDAT f t/sec stage 2 initial velocity in body frame 

STGDAT - stage 2 initial quaternion elements 42 

Values for the Kalman filter process noise "tuning" parameters and 

initial error magnitudes for initializing the error covariance matrix are: 

Symbol Common Units Description 

A CONST (see Table 2.-2) process noise magnitudes (1-sigmas) 
R CONST (see Table 2.-3) measurement noise variances 
ER APRIOR ft initial position uncertainties 
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EVB 

ESME 
ESRB 
EAR0 
EPLM 
EWND 
EACB 
ERDR 

EQ 
APRIOR 
APRIOR 
APRIOR (see 
APRIOR (see 
APRIOR 
APRIOR 
APRIOR 
APRIOR 
APRIOR (see 

f t/sec 

Table 2 . - 2 )  
Table 2 . - 2 )  

lb 
ft/sec 
ft/sec2 
Table 2.-3) 

- 

- 

initial body velocity uncertainties 
initial quaternion uncertainties 
initial SSME model uncertainties 
initial SRB model uncertainties 
initial aero coefficient uncertainties 
initial plume force uncertainties 
initial wind velocity uncertainties 
initial accelerometer bias uncertainties 
initial radar bias uncertainties 

A standard atmospheric model is used when the meteorological data is not 

specified as an option. The data used for this model is defined by the 

following tabular arrays: 

Symbol Common Units Description 

THALT ATMOS P ft tables of altitude 
THRHO ATMOSP lb sec2/ft4 tables of density 
THP ATMOS P lb/f t2 tables of static pressure 
THSUND ATMOSP ft/sec tables of speed of sound 

Tabular arrays containing modeling parameters for the SRB model are: 

Symbol 

NTAU 
TFSA 
TPVOL 
TAT 
TCSTR 
TTAU 
CM 
G 
GAM 
PE 
ABAR 
PBAR 
EPBAR 
XLNGTH 

Common 

SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 
SRBTBL 

Units 

- 
in2 
in3 
in2 
in/sec 
in 

in/sec2 

lb/in2 
in/sec 
lb/in2 

in 

- 
- 

- 

Description 

number of web thicknesses in SRB model 
table of propellant surface areas 
table of internal port volumes 
table of throat areas 
table of characteristic exhaust velocities 
table of web thicknesses 
SRB nozzle coefficient 
gravitational constant 
ratio of specific heats 
SRB exit pressure 
burn rate coefficient 
corresponding reference pressure 
burn rate exponent 
reference length for port volume 
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RBAR SRBTBL sec2/(Ro mole) universal gas constant 
XMBAR SRBTBL lb/mo 1 e molecular constant 
TEMP SRBTBL R0 combustion temperature 
PI SRBTBL - constant A 

The tabular values above are used in NASSRB with the routine INTRPl to 

determine specific values of the associated parameters. 

The SSME power law modeling data are also included in BLKDAT. The 

constants for this model are given as follows: 

Symbol Common Units Description 

PR 
YN 
XN 
PRZ 
PRX 
ZN 
RPLTAG 
wD02TU 
WDH2TU 
TVACTU 

SMETBL 
SMETBL 
SMETBL 
SMETBL 
SMETBL 
SMETBL 
SMETBL 
SMETBL 
SMETBL 
SMETBL 

partials from gain model 
reference: thrust, fuel and oxidizer flows 
reference: pressurant flows 
additional partials for fuel flows 
additional partials for pressurant flows 
reference: fuel flows 
individual engine tag pressure at P G 1  
individual engine tag oxidizer flow rate 

lb/in2 
lb/sec 
lb/sec individual engine tag fuel flow rate 
lb individual engine tag vacuum thrust 

Other data for atmospheric, aerodynamic, plume, mass properties and SRB 

models can be found in the routines ATMOS, NAERO, NPLUME, NMASS and NASSRB 

respectively. 
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4 . 3  INITIL Routine 

The INITIL routine initializes the states and error covariance matrix 

diagonals for the Kalman filter algorithm. Also, since the states are 

numerically integrated, the storage arrays used for the numerical integration 

are also initialized. 

For Stage 1, INITIL computes the initial BR position vector from the 

launch pad coordinates contained in BLKDAT. Also computed is the 

transformation matrix from earth centered inertial (ECI) to BR. This matrix 

is used later in the RADAR measurement update routine. Initial vehicle 

velocity and quaternions are also computed. Values for these states for stage 

2 are stored in BLKDAT and are extracted from the BET filter/smoother output's 

described in Appendix C. 

The states and filter variables initialized in INITIL are summarized 

below. 

Symbol Common Units Description 

R 
VB 

CIBRI 
XKM 
PKM 
VAR 

Q 

DER 
TEMP 

STATES ft initial BR position vector 
STATES f t/sec initial body velocity vector 

ASTRON - transformation matrix from ECI to BR 
PREUP (see Table 2 . - 2 )  state vector prior to measurement update 
PREUP (see Table 2 . -2 )  error covariance matrix prior to update 
unlabeled first element: current time, next t'n" 

STATES - initial quaternion elements 

elements state vector, next "n(n+1)/2" 
elements upper triangle of PKM. 

temporary storage array used by RK4FIL. 
unl ab e 1 ed corresponding time derivatives of VAR 
unl abe 1 ed 
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4.4 PROPAF Routine 

This routine sets-up all of the time derivatives for the numerical 

integration routine RK4FIL. 

routines are called from this routine. 

effect on vehicle motion are called from XDVEC. The routine ZDVEC forms the 

dynamics associated external measurement biases. 

the time derivatives for the state vector elements. 

As a result, all of the dynamical model related 

Those dynamical routines which have an 

These two routines then form 

The routine PDMTRX forms the time derivatives of the error covariance 

matrix whose upper triangular elements are used for numerical integration. 

This routine calls three routines; LINFS, LINFA, and LINFB. The first, LINFS, 

develops the partial derivatives of the vehicle motion with respect to the 

vehicle motion variables. The second, LINFA, develops the partial derivatives 

of the vehicle motion with respect to the aerodynamic, plume, wind and 

propulsion states. The last, LINFB, develops the linearized dynamics 

associated with the measurement biases. 

In the next subsection, the XDVEC, LINFS and LINFA routines will be 

described. These routines represent the most significant features of the 

model's representing this application. 

I 
I 
I 
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4.4.1 XDVEC Routine 

To form the time derivatives of the vehicle motion, XDVEC calls other 

routines which contribute to these derivatives. The major routines called are 

CONTRL, ATMOS, NPLUME, NASSME, NASSRB and NAERO. These routines also form the 

time derivatives for the dynamics represented by each of their functional 

areas, partial derivatives that effect vehicle motion with respect to their 

model elements, and for NASSME and NASSRB, estimates of measurements based on 

the current state values and associated partial derivatives of these 

measurements with respect to the model elements. 

The deferential equations formed within XDVEC were presented in section 

3.1. Fsz those equations, the FORTRAN symbol and originating routine is 

summarized as in the following. For the position vector, equation (10); 

Math Symbol 

- r(I) R 

- V ( B )  VB 

ICB CBI 

Units Subroutine Description 

ft XDVEC BR position vector 

ft/sec XDVEC body velocity vector 

- XDVEC body to BR matrix 

The body velocity, equation (ll), is summarized as 

Math Symbol Units Subroutine Description 

qdynAlm QAOM fc/sec2 XDVEC product of dynamic pressure, 

Cf 

$(EF) GRAV ft/sec2 AGRAV gravitational vector in EF 

reference area divided by mass 
CF - XDVEC aerodynamic force coefficient 

- w x p ocv ft/sec2 XDVEC Coriolis acceleration 

40 

I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I ROGERS ENGINEERING & ASSOCIATES 

I 
I 
I 
1 

i 
I 
I 

m 

THRUST lb XDVEC total thrust vector 

FPLUME lb NPLUME plume force vector 

XMASS lb sec/ft2 NMASS current vehicle mass 

CIB - XDVEC BR to body matrix 

The quaternion elements, equation (12), is summarized as 

Math Symbol Units Subroutine Description 

- XDVEC quaternion vector SI Q 
f[~,q,rl QDMTRX rad/sec QMTRX matrix of body rate components 

OMEGA r ad/s e c CONTRL body rates with respect to BR 
P 
q 
r 

The equations which incorporate winds and compute the aerodynamic angles, 

and total velocity, equations (13) through (16), are summarized as 

Math Symbol Units Subroutine Description 

BcLL CLLB - XDVEC local level to body 
transformation matrix 

vw f t/sec ATMOS wind velocity vector LL L 

x r  (BI VR ft/sec XDVEC body relative velocity vector 

vm VM ft/sec XDVEC total wind relative velocity 

Q ALPHA deg XDVEC angle of attack 

B BETA del3 XDVEC angle of slide slip 
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The total thrust vector components, equations (26) through (31) are 

summarized as 

Math Symbol 

BCc CCLB 

PS 

TSSME 
TSRB 
TVACL 
TVACS 
PS 
PSMEPS 
PSRBPS 

Units Subroutine Description 

- CONTRL 

lb XDVEC 
lb XDVEC 
lb NAS SME 
lb NASSRB 
lb/f t2 ATMOS 
f t2 BLKDAT 
f t2 BLKDAT 

42 
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4.4.1.1 CONTRL Routine 

This routine computes the thrust centerline to body transformation 

matrix BCc. 

mount structure cant angle, and the power level and inertia load induced 

structural deflections of the engine mount structure. 

pressure induced structural deformation effects are accounted for in 

converting gimbal linear displacements to angular deflections. 

For the main engines, this computation accounts for the engine 

The SRB nozzle entrance 

The transformation matrix for the main engines is obtained from [13] and 

is given as 

a PL 

Math Symbol 

BCc CCLB 

PL PL 

Units Subroutine Description 

- CONTRL thrust to body matrix 

- CONTRL commanded power level 

deg CONTRL pitch structural deflection 
due to thrust 

CONTRL yaw structural deflection 
due to thrust 

deg 

deg CONTRL pitch structural deflection 
due to inertia loads 

deg CONTRL yaw structural deflection 
due to inertia loads 
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GIMPTL deg CONTRL main engine pitch gimbal p, 

P,ef DEF deg CONTRL main engine structural cant 

GIMYWL deg CONTRL main engine yaw gimbal % 

[ IP 

[ IY 

- TMATP rotation matrix about pitch 

- TMATY rotation matrix about yaw 
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For each of the main engines, the structural deflection partials with 

respect to power level are given as 

engine no. 1: 

.566 + .35373-1 P, + .206E-3 Pg2 + .49E-3 Y, - .2783-3 Yg2 (35) 
8% 

a PL 
- - - -  I 

I -.3802 - .134E-2 P, - .408E-3 Pg2 + .8633-2 Y, + .238E-3 Yg2 (36) 
8% 

ap, 
- - - -  

engine no. 2: 

.5052 + .2995E-1 P, - .382E-3 Pg2 - 3633-2 Yg + .66E-4 Yg2 (37) 
8% 

a PL 
- - - -  I 

- - - -  I .0831 -.26E-3 P, - .2763-3 P: - .3473-3 Y, + .158E-3 Yg2 (38) 
a PL 

engine no. 3: 

1.4776 + .94153-1 P, - .7E-4 Pg2 - .4133-2 Y, - .43E-3 Y,' (39) 
aps 

ap, 
- - - -  

-.4265 - .102E-2 P, - .1923-3 Pg2 + .313E-2 Y, + .142E-3 Yg2 (40) 
8% 

a PL 
- - - -  I 
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The changes in apparent gimbal angle due to inertia loads for each 

engine are given as 

engine no. 1: 

be, -.lo54 qx + .0368 qz (41) 

A@, .0104 qx - .0069 qz (42) 

engine no. 2: 

A8, = - .1143 qX + 

A@, = - .0102 qX - 
.0331 qz 

.0069 qz 

engine no. 3: 

A8, -.1645 qx + .1580 q Z  

A@, = .0108 qx + .0082 qz 

(43 1 

(44) 

(45) 

(46) 

where the q x  and qz are the body longitudinal (forward) and normal (upward) 

load factors respectively. 
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The following equations describe the transformation matrix from thrust 

center line to body for the SRB's 

for the left hand SRB, P, and Y, are given in terms of rock, R, and tilt, T, 

angles by; 

P, .707 R - .707 T 

Y, * -.707 R - .707 T 

For the right hand SRB, P, and Y, are given by; 

P, 

Y, - 
-.707 R + .707 T 

.707 R + .707 T 

The rock and tilt angles 

from the following; 

R = .792 RD + .5(1 

T = .792 T, + .5(1 

above are obtained from rock and tilt displacements 

(52) 

(53) 
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The symbols for these equations 

Symbol 

PON 

RLD 

TLD 

RRD 

TRD 

RL 

TL 

RR 

TR 

GIMYWS 

GIMPTS 

used in CONTRL are summarized as 

Subroutine 

NASSRB 

CONTRL 

CONTRL 

CONTRL 

CONTRL 

CONTRL 

CONTRL 

CONTRL 

CONTRL 
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Description 

nozzle entrance pressure 

left hand rock displacement 

left hand tilt displacement 

right hand rock displacement 

right hand tilt displacement 

left hand rock angle 

left  hand tilt angle 

right hand rock angle 

right hand tilt angle 

yaw gimbal angle 

pitch gimbal angle 
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4.4.1.2 ATMOS Routine 

The ATMOS routine provides standard atmospheric properties if 

meteorological data is not specified as input. 

dynamic pressure, static pressure for altitude thrust correction, speed of 

sound for aerodynamic Mach number interpolation, and wind components in local 

level coordinates are the primary outputs. Additionally, gradients of these 

For either option, density for 

quantities with respect to altitude are provided. 

The outputs of ATMOS when IWIND option is used are summarized as: 

Symbol Units Common Description 

VW f t/sec VARIAB vector components of wind velocity 
VWGRAD f t/sec/f t VARIAB gradient wind vector with altitude 
F LINFMT elements 47 thru 49 of F matrix 
S CONST process noise variance elements 47 thru 49 
XDOT DRVITV elements 47 thru 49 of time derivatives 

The units for the F, S and XDOT arrays correspond to those in-Table 2.-1. 

Outputs of the ATMOS routine are used in XDVEC and LINFS routines. 
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4 . 4 . 1 . 3  NPLUME Routine 

This routine forms the plume force vector in body axis for the XDVEC 

routine and the associated partial derivatives for use in the LINFA routine. 

The equations were presented in Section 3 . 1 . 3  for these forces. 

The following summarizes the model and code symbols; 

Symbol 

DPL 

xK1 

xK2 

Y x A  

XKB 

FDP 

FAB 

RQ 

DFAB 

FAORB 

DFNB 

Units 

- 
- 
- 

de 8-l 

deg-' 

- 

- 
lb 

lb 

lb 

Subroutine 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

NPLUME 

Description 

difference between 1.09 and PL 

linear power level coefficient 

quadratic power coefficient 

angle of attack coefficient 

side slip coefficient 

power level modeling factor 

angle of attack and side slip 
modeling factor 
ratio of the dynamic pressure 
to the reference value 
incremental base axial force 

orbiter axial force 

incremental normal force 

These variables are derived from linear interpolation of data tables as a 

function of altitude for stage 1. Stage 2 plume axial and normal forces, DFAB 

and DFNB respectively, are specified only as functions of altitude and are 

obtained from the tabular arrays. The symbols used to define each variable in 

the tabular arrays is the same as the variable except with a "T" preceding the 
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variable symbol, i.e. TALT for altitude tabular array, and with a "2" after 

the variable symbol for the second stage tabular arrays, i.e. TDFNB2 for the 

incremental normal force for the second stage. 

Additional outputs of NPLUME are summarized as: 

Symbol Units Common Description 

FPLUME lb PLUME total plume force vector in body axis 
F LINFMT elements 44 thru 46 of F matrix 
S CONST process noise variance elements 44 thru 46 
XDOT DRVITV elements 44 thru 46 of time derivatives 

The units for the F, S and XDOT arrays correspond to the units indicated in 

Figure 2.-1. 
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4.4.1.4 NASSME Routine 

This routine converts the coefficients in the power gain law modeling 

data from BLKDAT, using the function POW, into the SSME performance 

characteristics: thrust, fuel and oxidizer weight flow rates, hydrogen and 

oxygen pressurant weight flow rates. Estimates of measurements of chamber 

pressure, pressurant flow rates, and fuel volume, temperature and pressure 

flow parameters. 

Partial derivatives are also computed for use in the linearized dynamics 

routine LINFA for propagating the error covariance matrix. Partial 

derivatives are also provided for the measurement update routines ACCEL and 

SSME for accelerometer and internal snIn ez;gir,e measurements respectively. 

The system model for the dynamics of the main engine is based on the 

weight overboard for each engine [ 8 ] .  The net weight flow overboard is then 

given by 

( 5 4 )  

Math Symbol Units Subroutine Description 

wH2 WDH2H lb/sec NAS SME estimated fuel flow rate 

w02 WD02H lb/sec NAS SME estimated oxidizer flow rate 

WgH2 WDGH lb/sec NAS SME estimated hydrogen pressurant 
flow rate 

wg02 WDGO lb/sec NAS SME estimated oxygen pressurant 
flow rate 

where the values of the individual weight flows given above are the sum of the 

52 

I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 



I 
I 

I 
I 
I 
1 

1 
I 
I 

ROGERS ENGINEERING & ASSOCIATES 

tag values from the power gain law, plus the deviations due t o  changes with 

respect to (wrt) changes in mixture ratio, chamber pressure, and pressurant 

flow rates as given by 

-L 

WgB wgH 6WgH 

Math Symbol 

- 
wH2 WDH2 

-L 

w02 wD02 

-L 

WDGO 

Units Subroutine Description 

lb/sec NAS SME nominal fuel flow rate 

(55) 

lb/sec NAS SME nominal oxidizer flow rate 

lb/sec NAS SME nominal oxygen pressurant 
flow rate 

lb/sec NAS SME nominal hydrogen pressurant 
flow rate 
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aWE2 - - -  
am 

lb/sec NAS SME partial fuel flow wrt 
mixture ratio 

PWFMR 

in2/sec NAS SME partial fuel flow wrt 
chamber pressure 

PWFPC - - -  
a PC 

aWE2 
PWFGO NAS SME partial fuel flow wrt 

oxidizer pressurant flow rate 

PWFGH NASSME partial fuel flow wrt 
fuel pressurant flow rate a wgE 

awo2 

am 
- - -  lb/sec NAS SME partial oxidizer flow wrt 

mixture ratio 
PWOMR 

in2/sec NASSME partial oxidizer flow wrt 
chamber pressure 

PWOPC 

PWOGO NAS SME partial oxidizer flow wrt 
oxidizer pressurant flow rate awgo 

PWOGH NAS SME partial oxidizer flow wrt 
fuel pressurant flow rate awgE 
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The nominal values from the power gain law are based on the estimate of power 

level expressed by: 

PL (Pc nom + 6Pc)/RPLTAG 

Math Symbol Units Sub rou t ine 

PL - NAS SME PL 

6PC PCHAT lb/in2 NASSME 

RPLTAG RPLTAG lb/in2 BLKDAT 

Pc nom PCTAG lb/in2 BLKDAT 

Similarly, the vacuum thrust is computed 

( 5 9 )  

Description 

power level estimate 

chamber pressure deviation 
estimate 

rated power level tag value 

chamber pressure tag value 

from the power gain law based 

on the tag values, plus the deviations due to mixture ratio, chamber pressure, 

and pressurant flow rates. Thrust and specific impulse are given as: 

afT afT af, . af, . 
Tvac I Tvac nom + - - -  6MR + - - -  6Pc + - - -  6wgo + - - -  6WeH 

am 8PC aw,0 awgH 

Math Symbol 

'Lac TVACH 

Tvac nom W A C  

Units Subroutine Description 

lb NAS SME vacuum thrust estimate 

lb NASSME vacuum thrust tag value 
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afT 

am 
- - -  

afT 

a pc 
- - -  

W 

PFTMR 

PFTPC 

PFTGO 

lb 

in2 

sec 

NAS SME partial thrust wrt mixture 
ratio 

NAS SME partial thrust wrt chamber 
pressure 

NAS SME partial thrust wrt oxidizer 
pressurant flow rate 

PFTGH sec NASSME partial thrust wrt fuel 
pressurant flow rate 

XISP sec NASSME vacuum specific impulse 
estimate 

WD lb/sec NAS SME total mass flew rate overboard 
estimate 

Estimates of the thrust and mass overboard are provided to the XDVEC 

routine for the vehicle motion dynamics, and estimates of the specific impulse 

are provided to the output routine, OUTPUT, for output to the SSMEOT.DATA data 

file. These are given as: 

Symbol Units 

TVACL lb 
OMAS E lb 
XISPL sec 
CVISPL sec2 
impulse 

Common Description 

SMEDAT vacuum thrust estimates for each engine 
SMEDAT overboard mass estimates for each engine 
SMEDAT specific impulse estimates for each engine 
SMEDAT variance uncertainties for specific 
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The following partial derivatives are provided to ACCEL measurement 

update routine for filter estimate updates based on accelerometer 

measurements. 

Symbol Common 

PFTMR METPRTL partial of thrust 
PFTPC METPRTL partial of thrust 
PFTGO METPRTL partial of thrust 
PFTGH METPRTL partial of thrust 

Description 

wrt mixture ratio 
wrt chamber pressure 
wrt oxidizer pressurant flow rate 
wrt fuel pressurant flow rate 

Estimates of measurements and the partial derivatives are provided to 

the SSME measurement update routine for filter estimate updates based on the 

internal main engine measurements. Partial derivatives of the dynamics are 

provided to the routine LINFA and process noise parameters are computed for 

the error covariance matrix propagation between measurement update times. 

time derivatives for the states are also provided. These are defined as: 

The 

Symbol Common Description 

XLH SMEMEA estimates of chamber pressure, pressurant flows, and 
fuel measurements of volume, pressure and temperature 
for each engine 

H LINHMT linearized measurement matrix rows 7 - 1 2 ,  13-18 
and 1 9 - 2 4  

F LINFMT linearized dynamics matrix rows 1 4 - 2 2 ,  2 3 - 3 1  and 3 2 - 4 0  

S CONST process noise array elements 1 5 - 2 2 ,  2 4 - 3 1  and 3 3 - 4 0  

XDOT DRVITV state time derivative elements 1 4 - 2 2 ,  2 3 - 3 1  and 3 2 - 4 0 .  
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The units for the F, S and XDOT arrays correspond to the units indicated in 

Table 2.-2. The H array’s units are indicated in Table 2.-3. 
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4.4.1.5 NASSRB Routine 

The NASSRB routine used the data from BLKDAT to compute the SRB 

performance characteristics of thrust, mass flow, burn web thickness, and 

specific impulse. This model is based on a quasi-static internal ballistics 

representation for web thickness [9]. Estimates of the head pressure 

measurement for each SRB are computed assuming the one-dimensional flow 

correction from [lo]. Also, included in this routine are the data tables 

correcting the vacuum thrust and nozzle coefficient correction based on 

previous NASA data analyses. 

As with the NASSME routine, NASSRB computes partial derivatives for use 

in the linearized dynamics routine LINFA. The partial derivatives are 

computed from pseudo static equations given in equations (29-31). Partial 

derivatives are also provided for measurement update ACCEL routine, using 

equation (28), for the accelerometer measurements, and for the SRB routine, 

using equation ( 3 3 ) ,  for head pressure measurements. 

The following summarizes the dynamic model and code symbols; 

Math Symbol 

ms XMD 

7 TAUD 

PO PO 

a ABAR 

P PBAR 

Units Subroutine Description 

lb/sec NASSRB mass flow rate overboard 

in/sec NASSRB web thickness burn rate 

lb/in2 NAS SRB nozzle entrance pressure 

in/sec BLKDAT reference burn rate 
coefficient 

lb/in2 BLKDAT reference burn rate 
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n EP 

scale pressure 

- BLKDAT burn rate exponent 

a AN [ a/pn 1 NAS SRB nominal burn rate coefficient 

1 - - -  OOMN - NAS SRB inverse of one minus EP 
1-n 

PP RHOP lb/in3 BLKDAT propellant density 

AB AB in2 NASSRB propellant burn area 

C* CSTAR in/sec NASSRB propellant characteristic 
exhaust velocity 

g G in/sec2 BLKDAT gravitational constant 

AT in2 NAS SRB nozzle throat area AT 

where propellant burn area, port volume, throat area, characteristic exhaust 

velocity, and thrust coefficient are linearly interpolated based on the 

estimated value of burn web thickness, 7 .  

The measurement model, given in equation (32), and code symbols are 

summarized as; 

1 
I 
I 
I 
1 
1 
1 
I 
1 

Math Symbol 

R RBAR 

A PI 

L XLNGTH 

VP PVOL 

Units Subroutine Description 

** BLKDAT universal gas constant 

- BLKDAT constant "pi" 

in BLKDAT port volume reference length 

in3 BLKDAT port volume 
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The vacuum thrust, given in equation ( 2 8 ) ,  derived corrections and 

specific impulse are summarized as; 

Math Symbol 

Tvac WACS 

TSP TSF 

AT, DTSRB 

XISPS I,, 

Units Subroutine Description 

lb NASSRB estimated vacuum thrust 

NAS SRB nozzle coefficient correction 

lb NASSRB thrust correction 

sec NASSRB estimated specific impulse 

where the correction, ATm, is obtained by linearly interpolating, using 

INTRP1, from data tables contained in the NASSRB routine based on the 

estimated value of r .  

Estimates of the thrust and mass overboard are provided to the XDVEC 

routine for the vehicle motion dynamics, and estimates of the specific impulse 

are provided to the routine, OUTPUT, for to the SRBOUT.DATA data file. These 

are summarized as; 

Symbol Common 

WACS SRBDAT 
oms s SRBDAT 
XISPS SRBDAT 
CVISPS SRBDAT 

Description 

vacuum thrust estimates for each SRB 
overboard mass estimates for each SRB 
specific impulse estimates for each SRB 
variance uncertainties for specific impulse 
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The following partial derivatives are provided to the ACCEL measurement 

update routine for filter state estimate updates based on the accelerometer 

measurements: 

Symbol Units Common Description 

PFT lb/in RBPRTL partial of thrust wrt burn web thickness 

PFA ** RBPRTL partial of thrust wrt burn rate 

PFCM lb RBPRTL partial of thrust wrt nozzle coefficient 
coefficient 

The nozzle entrance pressure is computed to convert rock and tilt 

deflections into pitch and yaw gimbal anglas. This value is communicated to 

the CONTRL routine via the commm PONOZZ for each SRB. 

Estimates of measurements and their partial derivatives are provided to 

the SRB measurement update routine for filter state estimate updates based on 

these internal measurements. Partial derivatives of the dynamics are provided 

to the routine LINFA and process noise parameters are computed to the error 

covariance matrix propagation. The time derivatives for the state elements 

are also provided. These are summarized as; 

Symbol Common Description 

POHHAT SRBMEA estimates of each SRB's chamber head pressure 
H LINHMT linearized measurement matrix rows 34 and 35 
F LINFMT linearized dynamics matrix rows 62-66 and 67-71 
S CONST process noise array elements 64-66 and 69-71 
D O T  DRVITV state time derivative elements 62-66 and 67-71. 
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The units for the F, S, and XDOT arrays correspond to the units indicated in 

Table 2.-2. The H array's units are indicated in Table 2.-3. 

I 
I 
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4.4.1.6 NAERO Routine 

This routine, as with ATMOS, NPLUME, NASSME, and NASSRB, contains a 

reference model. The filter estimates deviations from this model. The 

aerodynamic coefficients are formed from a polynomial expression given in 

equations (17), (18), and (19). Filter estimates of angle of attack and side 

slip are used to form the total coefficient vector as given in equation (20). 

The resulting coefficient vector is supplied to the XDVEC routine. 

coefficients about angle of attack and side slip are supplied to the LINFA 

routine for propagating the error covariance matrix. 

Linearized 

The coefficients in equations (17), (18), and (19) are defined as: 

Math Symbol Units Subroutine Description 

CAO 

CAA 

cAA2 

CAB2 

cAAB2 

CNO 

CNA 

CNAB2 

CY0 

CYB 

CYAB 

CYA2B 

- 

deg-' 

de g-2 

de g-2 

de g-3 

- 
de g- ' 
deg-3 

- 
deg-' 

de g-2 

deg-3 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 

NAERO 
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zero alphabeta coefficient 

axial coefficient of a 

axial coefficient of a2 

axial coefficient of p2 

axial coefficient of ap2 

zero alphabeta coefficient 

normal coefficient of a 

normal coefficient of aS2 

zero alphabeta coefficient 

side force coefficient of /3 

side force coefficient of a/3 

side force coefficient of a2/3 
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The filter's estimates are corrections added onto the zero alphabeta terms. 

Each of the terms above are tabulated as a function of Mach number, and 

are linearly interpolated using INTRP1. 

tabular arrays are the same as the variable, except that the tabular array 

symbols have a "T" preceding the variable symbol, i.e. TCAO for the zero 

alphabeta axial force coefficient. 

the second stage coefficients and tabular arrays, i.e. TCN20 for the aero 

The symbols used to define the 

A "2" is appended onto the variable for 

alphabeta normal force coefficient. 

These coefficients and partials are equated to the appropriate vector 

elements and communicated to other routines. 

components are defined as: 

These body referenced vector 

Symbol Units Common Description 

CFO - AERO zero alphabeta force coefficient 
CFALP deg-' AERO force coefficient slope wrt alpha 
CFBET deg-l AERO force coefficient slope wrt beta 
CFQ sec AERO partial force coefficient wrt body rates 

Additional outputs from the NAERO routine are summarized below as: 

Symbol Common Description 

F LINFMT elements 41 thru 43 of linearized dynamics matrix 
S CONST process noise elements 41 thru 43 
XDOT DRVITV elements 41 thru 43 of state vector time derivatives 

The units for the F, S ,  and XDOT arrays correspond to the units indicated in 

Table 2.-2. 
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4.4.1.7 NMASS Routine 

This routine computes the mass properties as a function of mass 

overboard. This routine contains data for mass moment of inertia for stages 1 

and 2 that are no longer used in the current estimation approach. 

function of this routine is to compute the vehicle's current mass by 

subtracting the mass overboard from the initial weight initialized in the 

BLKDAT routine. 

on the mass overboard. 

The 

The vehicle's center of gravity components are computed based 

The initial mtss properties, weight, for each state is communicated via 

a common statement: 

Symbol Units 

XMASSI lb 
XMAss2 lb 

Common Description 

IPROPR initial stage 1 weight 
IPROPR initial stage 2 weight 

. -4 

Data contained in NMASS, not all currently used, is described below: 

Symbol Units . Subroutine Description 

XMAS s lb sec2/ft NMASS current vehicle mass 
OMAS s lb XDVEC total weight overboard, starting at 0, 

XIMTRX slug ft2 NMASS mass moment of inertia matrix 
XIMATI l/slug ft2 NMASS inverse of inertia matrix 
RCG ft NMAS s body referenced coordinates of vehicle 

summed from all propulsive systems 

center of gravity 

The values used in the inertia matrix and the center of gravity vector 

are obtained by linear interpolation, using INTRP1, from tabular arrays as a 

I 
I 
I 
1 
1 
I 
I 
1 
II 

I 
I 
1 
I 66 



ROGERS ENGINEERING & ASSOCIATES 

function of weight overboard. 

tabular array data contained in NMASS. 

The following summarizes the description of the 

Symbol 

DELWT 
TIX 
TIY 
TIZ 
TIXY 
TIXZ 
TIYZ 
TXCG 
TYCG 
TZCG 
DELTWT 

AIXX 
A I W  
AI ZZ 
AIXY 
AIXZ 
AIYZ 
AXCG 
AYCG 
AZCG 
DELTW2 

Units 

lb 
slug ft2 
slug ft2 
slug ft2 
slug ft2 
slug ft2 
slug ft2 
ft 
ft 
ft 
lb 

slug ft2 
slug ft2 
slug ft2 
slug ft2 
slug ft2 
slug ft2 
ft 
ft 
ft 
lb 

Subroutine Description 

NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMASS 

NMASS 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 
NMAS s 

1st stage weight overboard 
1st stage x axis inertia 
1st stage y axis inertia 
1st stage z axis inertia 
1st stage x-y products of inertia 
1st stage x-z products of inertia 
1st stage y-z products of inertia 
1st stage x center of gravity 
1st stage y center of gravity 
1st stage z center of gravity 
1st stage weight overboard for moments 
of inertia 
2nd stage x axis inertia 
2nd stage y axis inertia 
2nd stage z axis inertia 
2nd stage x-y products of inertia 
2nd stage x-z products of inertia 
2nd stage y-z products of inertia 
2nd stage x center of gravity 
2nd stage y center of gravity 
2nd stage z center of gravity 
2nd stage weight overboard for moments 
of inertia 
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4.4.1.8 Additional Routines 

The routines described previously are the primary routines that contain 

modeling information. 

XDVEC. These are; AGRAV which computes the earth centered gravitational 

accelerations based on a second order oblate spheroid earth model, COOR which 

computes latitude, longitude and altitude from earth centered position, and 

QMTRX which computes the dynamics matrix, equation (12), for the quaternion 

state elements. 

Several additional routines support computations within 

Additional library routines are used in XDVEC and elsewhere in the 

programs. These routines are described in Appendix D. 

68 

I 
I 
1 
1 
1 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 



ROGERS ENGINEERING & ASSOCIATES 

4.4.2 ZDVEC Routine 

This routine provides the dynamic derivatives associated with the 

external measurement bias states. These states include the accelerometer and 

radar measurement biases. 

The following derivatives are formed within ZDVEC: 

Symbol Common Description 

XDOT DRVITV elements 50 thru 52 for accelerometer bias 
elements 53 thru 55 for 1st radar biases 
elements 56 thru 58 for 2nd radar biases 
elements 59 thru 61 for 3rd radar biases 

The units for the XDOT array correspond to the units indicated in Table 2.-2. 
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4.4.3 PDMTRX Routine 

The Kalman filter algorithm requires not only the state time 

derivatives, but also the time derivatives for the error covariance matrix. 

These derivatives are established by forming the linearized dynamics matrices 

and completing the matrix products as shown in Table 2.-1. 

the linearized dynamics matrices, using some partial derivatives formed when 

XDVEC routine is called. 

This routine forms 

The linearized dynamics matrix for the states listed in Table 2.-2 is 

shown in Figure 4.4.3-1. This linearized dynamics matrix, which represents 

the partial derivatives of the state differential equations wrt each state 

element, is partitioned into the dynamics matrices for; the vehicle motion 

dynamics formed in LINFS, i.e. quaternion elements, the system error 

parameters formed in LINFA, i.e. SRB burn rate coefficient, and the external 

measurement biases formed in LINFB, i.e. accelerometer bias. The submatrices 

indicated by 

respectively. 

and []A,B correspond to the SSME and SRB submatrices 

These submatrices are illustrated in Figure 4.4.3-2. 

As the individual linearized dynamics matrices are formed, they are 

imbedded within the overall linearized system dynamics matrix, F, and 

communicated to PDMTRX via labeled common statement LINFMT to form the time 

derivative of the error covariance matrix. In the following sections, each 

routines that form the partitioned submatrices will be discussed. 
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4.4.3.1 LINFS Routine 

This routine forms the partial derivatives of the vehicle motion states, 

position, velocity and attitude (quaternion), with respect to themselves. 

After these are formed, the routine IMBED stores the partial derivatives in 

the appropriated location with the linearized dynamics matrix F. The 

following describes the elements formed: 

73 



ROGERS ENGINEERING & ASSOCIATES 

Math Symbol Units Subroutine Description 

QDMTRX 

XDVEC partial of equation (10) 
wrt body velocity 

f t/sec AXCBIQ partial of equation (10) 
wrt quaternions 

sec-' LINFS partial of equation (11) 
wrt position 

sec-l 

sec-' 

sec-l 

LINFS partial of equation (11) 
wrt body velocity 

LINFS partial of equation (11) 
wrt quaternions 

QMTRX partial of equation (12) 
wrt quaternions 
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4.4.3.2 LINFA Routine 

Partial derivatives of the vehicle motion state time derivatives with 

respect to the system error parameters are limited to the partial derivatives 

of body velocity partials. 

into the appropriate elements of the linearized dynamics matrix F. 

order in which they are included in the state vector, below is a summary of 

the partials formed within LINFA: 

The routine IMBED is used to insert these partials 

In the 

Math Symbol Units Subroutine Description 

a,(B) - - - - -  - ** NAS SME partial of equation (11) 
a (  1 wrt SSME states 

a p )  

aEf 
- - - - -  PVBDCF ft/sec2 LINFA partial of equation (11) 

wrt aero force coefficients (B) 

a,(B) 

q l  

- - - - -  PVBDFP f t/sec2/lb LINFA partial of equation (11) 
wrt plume forces (B) 

sec-l 

** 

LINFA partial of equation (11) 
wrt wind velocity 

NASSRB partial of equation (11) 
wrt SRB states 

** see the individual routines, i.e. NASSME, for the units definitions 
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4 . 4 . 3 . 3  LINFB Routine 

This routine forms the elements of the linearized dynamics matrix 

associated with the external measurement bias states. These matrix elements 

are described as: 

Symbol Common 

F LINFMT 

Description 

elements 5 0 , 5 0  thru 5 2 , 5 2  for accelerometer 
elements 5 3 , 5 3  thru 5 5 , 5 5  for 1st radar 
elements 5 6 , 5 6  thru 5 8 , 5 8  for 2nd radar 
elements 5 9 , 5 9  thru 6 1 , 6 1  for 3rd radar 

Also, formed are the process noise array elements which represent the 

continued uncertainty added to the error covariances associated with modeling 

these errors as exponentially correlated noises. 

bias states are described as: 

The array elements for the 

Symbol Common 

S CONST 

Description 

elements 50 thru 52 for accelerometer biases 
elements 53 thru 55 for 1st radar biases 
elements 56 thru 58 for 2nd radar biases 
elements 59 thru 6 1  for 3rd radar biases 

The units for the F and S arrays correspond to the units indicated in Table 

2 .  - 2 .  
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4.5 RK4FIL Routine 

RK4FIL implements a fourth order Runge-Kutta numerical integration 

algorithm. 

filter states and the upper triangular portion of the symmetric error 

covariance matrix. 

This algorithm is used to integrate the time derivatives of the 

The time derivatives are stored in the DER array in the unlabeled 

common. 

A work space required by this algorithm implementation uses the TEMP array in 

this common statement. The total number of variables to integrate is 

identified as NDER also contained in this common. 

The resulting integrals are stored in the VAR array in this common. 

I 
I 
I 
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4 . 6  GETDAT Routine 

This routine reads the measurement input data file, REAZMEA.DAT, on 

logical unit 2. These data, all synchronized to the same time instances, are 

produced by the preprocessing program MERGE which merges data from other 

preprocessing programs. These programs are described in Appendix A. 

At each measurement time, the following data are read and communicated 

to the applicable measurement update routines: 

Symbol Units Common Description 

ACM ft/sec2 ACMEAS IMU platform delta velocity 

YMSME ** MEMEAS main engine measurements ( 6  per 

AZM deg RDMEAS radar azimuth angular measurement 

ELM deg RDMEAS radar elevation angular measurement 
RNGM ft RDMEAS radar range measurement 
YMSRB lb/in2 SRMEAS SRB head pressure measurements 

components ( 3 )  

engine) 

( 3  radars) 

(1 per motor) 

** see the units as defined in Table 2.-3. 
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4.7 UPDATE Routine 

Based on the flags set in the BLKDAT routine, the UPDATE routine calls 

the routines which accomplish the measurement updates for the corresponding 

measurements. Contained in the common NMEASR, are the number of measurement 

types to be processed, NMEAS, and the flag for each type contained in the 

array IMEAS. If the flag is set as indicated by a "l", then the appropriate 

routine to accomplish the update is called. 

For each measurement type, i.e. radar, the processing sequence is as 

follows. 

covariance matrix, resulting either from time integration or from a previous 

measurement update, are extracted from the VAR array in the unlabeled common. 

These quantities are then stored in the XKM and PKM arrays, in the PREUP 

common, respectively. 

values of the XKM and PKM arrays are generated. 

stored back into the VAR array where they are available for numerical 

integration or for additional measurement updating. 

The current filter states and upper triangular portion of the error 

Each measurement update routine is then called and new 

These new values are then 

The total number of estimation state elements is the sum of the number 

of vehicle motion states, NS, and the number of other model states, NPAR. 

These two numbers are communicated via the labeled common LINFMT. 

Each of the measurement updating routines, ACCEL, SSME, RADAR and SRB, 

process measurements using the same sequence. This sequence is described as 

follows. 

The Kalman filter algorithm described in section 2. is a implementation 

of the U-D factorized form of the Kalman filter [5]. This form of the 
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algorithm processes each measurement, i.e. radar azimuth, individually. 

Therefore, each individual measurement's linearized measurement matrix, a row 

vector formed from the partial derivatives of that measurement wrt the state 

elements, is extracted from the full linearized measurement matrix for that 

measurement's updating. 

elements of the error covariance matrix, the measurement residual covariance, 

and the unweighted Kalman gain vector. Since these quantities are used 

repeatedly in the UPDATE routines, a common storage UDWORK is used for these 

arrays. 

The outputs of the algorithm are the upper triangular 

Initially, in the ACCEL routine, the linearized measurement matrix, H, 

is initialized to zero. 

algorithm, but is formed to aid in the analysis of the "observability" of the 

system, for a check on the adequacy of the implementation of the mathematical 

linearizations versus results from numerical differentiation, and for 

temporary storage of the appropriate measurement's partial derivatives with 

respect to the state elements. 

'J3i.s inatrix is not specifically needed in the U-D 

For each measurement, i.e. accelerometers 1 thru 3 ,  the most recent 

values of the state variables and other related variables are computed by 

calls to the XDVEC and ZDVEC routines. Prior to this call, the state 

variables are extracted from the XKM array and stored into the X array where 

the XDVEC and ZDVEC routines expect the current variables to be located. 

Using these most recently computed values of the appropriate variables, the 

estimates of the measurements are formed. This includes the addition of the 

bias state elements associated with the measurement, i.e. accelerometer bias. 
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Next, the row vector corresponding to the measurement's partial 

derivatives wrt the state elements is extracted and stored in the RG array. 

The error covariance matrix, stored in upper triangular form, is extracted and 

stored in the U array. In this form, the routine COV2UD is called to convert 

the error covariance matrix into the U-D factorized form. At this stage, the 

necessary inputs are available to compute the measurement update to the error 

covariance matrix. 

This update is accomplished by calling the UDMEAS routine. This routine 

computes the updated form of the U-D factorized error covariance matrix. 

Returning this array as U, the routine UD2COV is called to convert U into the 

upper triangular portion of the error covariance matrix, PO. 

is then used to re-establish the full form of the error covariance matrix PKM. 

This PO matrix 

Also output from UDMEAS are the arrays used to form the Kalman gain for 

updating the state elements. 

RESID, from the difference between the measurement and the estimate of the 

measurement formed from the state elements. 

Kalman gain and this correction is then added to the previous value of the 

state estimates. 

This is accomplished by forming the residual, 

This value is multiplied by the 

Were it not for the use of quaternions to describe the vehicle's 

attitude, this would complete the state update process for the measurement 

processed. Quaternions, with 4 elements, can be uniquely described by using 

only 3 elements. 

the squares of all four elements must equal 1. 

quaternion element can be obtained from the constraint relationship. 

The fourth is determined from the constraint that the sum of 

The update to the fourth 

This 
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update is given by [6] 

The error covariance matrix row and column that contains this element are 

similarly updated deterministically. 

After each measurement has been processed, the output routine, OUTPUT, 

is called to output the relevant data to an output disk file, FILOUT.DATA. 

The above sequence is repeated for each measurement processed. 

The linearized measurement matrix, H, is illustrated in Figure 4.7-1, 

partitioned as in the case of the F matrix in Figure.4.4.3-1. 

indicated by []1,3 and []a,B correspond to the SSME and SRB linearizations 

respectively. These submatrices are illustrated in Figure 4 . 4 . 3 - 2 .  Each of 

the following sections describe the type of measurements processed. 

The submatrices 

a2 

I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 

I 
I 

ROGERS ENGINEERING & ASSOCIATES 

I O  

I O  

0 

rl 

I +  0 0 

0 0 0 

83 

X 
I 

X 
.d 

.. 
d 
I 

h 

ORIGINAL PAGE IS 
OF POOR QUALfTY 



ROGERS ENGINEERING 6 ASSOCIATES 

0 -  
, 1 1 1  

: -4 
0 ' 0  

P 

c 

i 
1 

3 

2 
'9 

'Q 

h" : 
' 0 1  

84 

Q 

E 
3 
w 

v1 

.. 
cv 
b 
I 

ORIGINAL PAGE IS 
OF POOR QUALnY 



I 
1 
I 

I 
I 
I 
I 

1 
1 
I 

ROGERS ENGINEERING & ASSOCIATES 

4.7.1 ACCEL Routine 

The measurement updating process accomplished in this routine is the 

sequence just described. For the accelerometer measurement, equation (32), 

the following summarizes the mathematical and code symbology; 

Symbol Units 

ACMHAT ft/sec2 

CBS - 

ACC ft/sec2 

OMEGA sec-l 

DRS ft 

ft/sec2 

Subroutine Description 

ACCEL sensed acceleration 

CBIMXQ transformation from body 
t o  sensed frame 

XDVEC combined aerodynamic and 
plume accelerations 

CONTRL body rotation rate from 
body rate gyros 

ACCEL IMU position relative to 
body center of gravity 

ACCEL accelerometer bias 

where the angular acceleration terms have been omitted. 

Partial derivatives of the measurements are formed and communicated to 

ACCEL via several common statements. From LINFS, the following [ I  terms are 

provided to form the first two vector components of the motion dynamics: 

I 
I 
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Math Symbol Units 

sec-l 

Common Description 

APARTL partial derivative of body 
acceleration wrt BR position 

APARTL partial derivative of body 
acceleration wrt body velocity 

The partial derivative of body acceleration with respect to the quaternion 

elements, the last motion dynamic vector components, is provided by AXCBIQ and 

is obtained from: 

where the bracketed terms are those in equation (32). 

The following summarizes the partial derivatives formed in LINFA for the 

aerodynamic, plume and wind contributors to acceleration: 

Math Symbol Units Common Description 

a,(B) 
- - - -  PVBDCF ft/sec2 PARARO partial of equation (11) 
as, wrt aerodynamic coefficient 

PVBDFP ft/sec2/lb PARPLM partial of equation (11) 
wrt plume forces 
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PVBDVW sec-l PARWX partial of equation (11) 
wrt wind velocity components 

Individual contributors of the state elements from the main engines', 

described in section 4.4.1.4, and SRBs', described in section 4.4.1.5, are 

combined within ACCEL to form the partial derivatives of body acceleration 

with respect to these elements. 

The partial derivative of acceleration measurement with respect to its 

bias is unity, UNIT. 
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4.7.2 SSME Routine 

As with the ACCEL routine, the most recent values of the variables 

associated with the main engine are recomputed prior to using them in 

computing the estimate of the measurement to be processed. 

ACCEL, each measurement is processed. 

measurements are computed within the NASSME routine rather than being formed 

in the SSME routine as they were in the ACCEL routine. 

derivatives of the measurements with respect to the main engine states are 

formed with the NASSME routine. 

Then, as with 

The estimates of the states and 

Also, the partial 

After updating, the outputs are provided via common to the OUTPUT 

routhe. 
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4.7.3 SRB Routine 

This routine's processing parallels that previously described for the 

SSME routine. 

NASSRB routine with only the measurement updating being accomplished within 

the SRB routine. 

All the model relevant computations are accomplished in the 
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4.7.4 RADAR Routine 

The structure of this routine parallels the ACCEL routine in that the 

estimates of the measurements and the necessary partial derivatives are formed 

within this routine. The identical routine is used in the LFILTER program for 

providing trajectory reconstruction - BET. It is discussed in Appendix C. 
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4.8 OUTPUT Routine 

After each of the measurement updates from the measurement update 

routines, OUTPUT is called to output the data to the output disk file 

FILOUT.DAT. 

processed output is contained in this file. The updated state estimates, 

variances, the measurement variance, and the measurement residual are also 

output. 

plots of the filter's states and residuals with the associated uncertainties. 

Other variables of special interest are also output. These are the SRB 

In addition to the time, a count of which measurement is being 

These data are later read by a plotting program which produces output 

and main engine performance data, i.e. specific impulse. 

The filter's outputs of the PFILTER program, as provided by the OUTPUT 

routine, are summarized as: 

Symbol Units Common Description 

V W 1 )  
TLAST 
KO 
NMEAS 
XKM 
PKM 
covz 
RESID 

sec 
sec - 
- 
* 
* 
** 
** 

unlabeled current time 
last time output data written to disk 
current count of the measurements updated 

LINHMT total number of measurements to process 
PREUP current state vector estimate 
PREUP current error variances (diagonal of PKM) 
UDWORK variance of measurement residual 
UDWORK measurement residual 

* see Table 2.-2 for definition of units 
** see Table 2.-3 for definition of units 
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Special outputs are provided for a quantitative evaluation of the 

propulsion performance estimates. For the SRB the following variables are 

output in the file SRBOUT.DATA: 

Symbol Units Common Description 

V A N 1 1  sec unlabeled current time 
POHHAT lb/in2 SRBMEA head pressure 
XISPS sec SRBDAT specific impulse 
TVACS lb SRBDAT vacuum thrust 
XMD lb/sec SRBDAT mass flow rate overboard 
AEXIT in2 SRBDAT exit area 

These variables are output for each motor at each time step using the 

following format: 

FORMAT( F7.3, 2F10.3, F13.1, 2F10.3 ) 

The main engine special output variables are written to the file 

SSMEOT.DATA at 27 words per record. These variables are summarized as: 

Symbol Units 

V W 1 )  
PLN 
TVACL( 1-3) 
XISPL(1-3) 
WD02H( 1-3) 
WDH2H( 1-3) 
XLH(2(1-3)) 
XLH(3(1-3)) 
WD( 1-3) 

sec 

lb 
sec 
lb/sec 
lb/sec 
lb/sec 
lb/sec 
lb/sec 

- 

Common 

unlabeled 
GIMBAL 
SMEDAT 
SMEDAT 
SMEDAT 
SMEDAT 
SMEMEA 
SMEMEA 
SMEDAT 

Description 

current time 
commanded power level 
vacuum thrust 
specific impulse 
oxidizer mass flow rate overboard 
fuel mass flow rate overboard 
oxygen pressurant mass flow rate 
hydrogen pressurant mass flow rate 
total mass flow rate overboard 
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5. Program Operation and Results 

The PFILTER program and the associated preprocessing programs are 

operational on the EADS IBM 3090 and CRAY X-MP computer systems. 

preprocessing programs operate on the IBM where the data bases are located. 

The PFILTER programs' files are permanently located on the IBM but the program 

operates on the CRAY. Utilizing job control language (JCL), the necessary 

files and input data are retrieved with the program execution. 

output files are cataloged on the IBM for further processing. 

processing included plotting the filter's states and measurement residuals to 

assess the quality of the filter's results. The JCL for PFILTER's execution 

is presented in Figure 5.-1. 

The 

The resulting 

This further 

The program which produces the BET is located on the SAILl VAX computer 

system. 

Radar tracking data on the SAILl versus the EADS IBM 3090. As soon as it 

arrives, the tracking data tape can be quickly read into the VAX computers and 

data processing can begin immediately afterwards. 

parallels that presented earlier [12]. 

The BET program was not transferred because the ease of access to the 

This program's execution 

Iterations are usually required to refine the PFILTER program's output 

estimates. The need for these refinements is indicated by the quality of the 

residuals as discussed earlier, and the degree of agreement of the filter's 

estimates with other events observed flight data, i.e. SRB separation time. 
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//CRMR197 JOB (6EP55 ),ROGERS,CUSS=G,MSCLEVEIr(l,l), 
// TIME=0025 
// EXEC CRAY 
//SYSIN DD 

//INPUT DD * 
JOB,JN=CRMR197,T=900. 
ACCOUNT,AC=6EP551590294,US=CRKR197. 
FETCH,DN=PFILTR,TEXT='DSN=CRMR197.PFILTER.FOR(PFILTR),DISPPSHR8. 
COPYR,I=PFILTR,O=FILTER,NR=190. 
FETCH,DN=BLKDAT,TEXT='DSN=CRMR197.PFILTER.FOR(BLKDAT),DISPPSHR'. 
COPYR,I=BLKDAT,O=FILTER,NR=260. 
FETCH,DN=1N1T1L,TEXT=I8DSN=CRMR197.PF1LTER.F0R(1N1T1L),D1SPPSHR'. 
COPYR,I=INITIL,O=FILTER,NR=155. 
FETCH,DN=PROPAF,TEXT='DSN=CRMR197.PFILTER.FOR(PROPAF),DISPPSHR'. 
COPYR,I=PROPAF,OIFILTER,NR=106. 
FETCH,DN=ERTHn,TEXT='DSN=CRMR197.PFILTER.FOR(ERTHM),DISPISHR'. 
COPYR,I=ERTHM,O=FILTER,NR=124. 
FETCH,DN=XDVEC,TEXT='DSN=CRMR197.PFILTER.FOR(XDVEC),DISPISHR8. 
COPYR,I=XDVEC,O=FILTER,NR=323. 
FETCH,DN=PDMTRX,TEXTP8DSN=CRWR197.PFILTER.FOR(PDMTRX),DISPLSHR'. 
COPYR,I=PDMTRX,O=FILTER,NR=668. 
FETCH,DN=ATMOS,TEXT='DSN=CRMR197.PFILTER.FOR(ATMOS),DISPPSHR8. 
COPYR,I=ATMOS,O-FILTER,NR=134. 
FETCH,DN=NASSME,TEXT='DSN=CRMR197.PFILTER.FOR(NASSME),DISPmSHR'. 
COPYR,I=NASSME,O=FILTER,NR=266. 
FETCH,DN=RADAR,TEXT='DSN=CRMR197.PFILTER.FOR(RADAR),DISPISHR8. 
COPYR,I=RADAR,O=FILTER,NR=208. 
FETCH,DN=NASSRB,TEXT='DSN=CRMR197.PFILTER.FOR(NASSRB),DIS~SHR8. 
COPYR,I=NASSRB,O=FILTER,NR=269. 
FETCH,DN=NAeRO,TEXT='DSN=CRMR197.PFILTER.FOR(NAERO),DISPISHR'. 
COPYR,I=NAERO,O-FILTER,NR=497. 
FETM,DN=NP~,TEXPP'DSN=CRMR197.PFILTER.FOR(NPLUME),DISPPSHR8. 
COPYR,I=NPLUME,OIFILTER,NR=286. 
FETCH,DN=NMASS,TEXT='DSN=CRMR197.PFILTER.FOR(NMASS),DISPISHR'. 
COPYR,I=NMASS,O=FILTER,NR=201. 
FETCH,DN=AXMAT,TEXT='DSN=CRKR197.PFILTER.FOR(AXMAT),DISPISHR'. 
COPYR,I=AXMAT,O=FILTER,NR=424. 
FETCH,DN=INTRP1,TEXT='DSN=CRMR197.PFILTER.FOR(INTRP1),DISPPSHR8. 
COPYR,I=INTRPl,O=FILTER,NR=14. 
FETCH,DN=KONTRL,TEX~'DSN=CRMR197.PFILTER.FOR(CONTRL),DISPPSHR'. 
COPYR,I=KONTRL,O=FILTER,NR=123. 
FETCH,DN=UPDATE,TEXTI'DSN=CRMR~~~.PFILTER.FOR(UPDATE),DISPPSHR'. 
COPYR,I=UPDATE,O=FILTER,NR=201. 
FETCH,DN=NOISE,TEXT='DSN=CRMR197.PFILTER.FOR(NOISE),DISPISHR~. 
COPYR,I=NOISE,O=FILTER,NR=23. 
FETCH, DN=HEASUR, TEXT='DSN=CRMRl97. PPILTER. FOR(HEASUR) , DISPPSHR' . 
COPYR,I=MEASUR.O=FILTER.N2=592. 

CRSUBMIT F(1NPUT) HOLD NOTIFY(CRMR197) SUB(CSS1) 

FETCH; DN=MLIB,TEXT='DSN~CRMR197 .PFILTER. BOR(ML1B) , DISPrSHR' . 
COPYR,I=MLIB,O=FILTER,NR=296. 
FETCH,DN~OUTPUT,TEXT='DSN=CRMR197.PFILTER.FOR(OUTPUT),DISPPSHR'. 
COPYR,I=OUTF'UT,O=FILTER,NR=71. 
FETCH,DN=ZDVEC,TEXT='DSN=CRMR197.PFILTER.FOR(ZDVEC),DISPISHR8. 
COPYR,I=ZDVEC,OIFILTER,NR=28. 
FETCH,DN=LINFB,TEXT='DSN=CRMR197.PFILTER.FOR(LINFB),DISPPSHR8. 
COPYR,I=LINFB,O=FILTER,NR=43. 
FETCH,DN=REFRAC,TEXT;.'DSN=CRMR197.PFILTER.FOR(REFRAC),DISP=SHR'. 
COPYR,I=REFRAC,O=FILTER,NR=98. 
REWIND,DN=FILTER. 
CFT, I=FILTER. 
FETCH,DN=CONTRL,TEXT='DSN=CRMR197.CTLIPT.DATA,DISPISHR'. 
FETCH,DN=REALME,TEXT='DSN=CRMR197.REALXEA.DATA,DISPISHR'. 
FETCH,DN=METDAT,TEXT='DSN=CRMR197.METIPT.DATA,DISPISHR'. 
LDR . 
DISWSE,DN=FILOUT,DC=ST,* 

TEXT='DSN=CRMR197.FILOUT.DATA,DISP=(NEW,CATLG),'A 
'UNIT=SYSDA,SPACE=(CYL, (20,lO) ,RUE), 
'DCB=(RECFM=FB,LRECIp8O,BLKSIZE=6320)'. 

TEXT=8DSN=CRMR197.SSMEOT.DATA,DISP=(NEW,CATLG),'A 
DISWSE,DN=SSMEOT,DC=ST,^ 

'UNIT=SYSDA,SPACE=(TFU(,(5,1)),'^ 
'DCB=(RECFn=FB,LRECL==133,BLKSIZE=6251)'. 

DISWSE,DN=SRBOUT,DC=ST,^ 
TEXT='DSN=CRMR197.SRBOUT.DATA,DISPI(NEW,CATLG),'* 

8UNIT=SYSDA,SPACE=(TRK,(5,1)),'A 
'DCB=~RECFM=FB,LRECL=133,BLKSIZE=6251)'. 

Figure 5.-1: PFILTER.CJOB File 
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An example of the need for refinements is when the SRB separation time 

as estimated does not agree with the event time obsenred. 

separation time based on the estimate of head pressure. 

criterion as onboard, time when the second motor's pressure falls below 50 psi 

plus a predetermined delay time, the program stops execution at this time and 

prints out the filter's time, state variables, and error variances of those 

estimates. 

The filter set the 

Using the same 

Two quantities are adjusted to better match this observed event. These 

are the burn rate coefficient and pressure bias uncertainty. 

most dominant during first stage, and, even though the program adjusts this 

parameter automatically, an adjustment is usually required which may be larger 

than that allowed by the program. 

small for this parameter prevents large departures from the assumed linear 

deviations upon which the extended Kalman filtering is based. 

the outputs, these adjustments bring-the filter's operation more closely into 

the linear operating region about the prescribed reference models. 

The first is the 

Keeping the program's range of adjustment 

By monitoring 

After the SRB burn time, as estimated by the filter, agrees with the 

event time, other adjustments may be required. Another of these is the 

balance between the accelerometer and radar measurements. The accelerometer 

measurements significantly effects all states. 

agreement with the measurements, small measurement uncertainty specified, the 

resulting vehicle's position may deviate from that required by the radar 

measurements. As a consequence, the use of radar measurements will not 

totally correct for accelerometer measurement update's inappropriate 

By requiring too close 

I 
I 
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corrections. 

accelerometer and radar, the measurements for these measurements may have to 

be adjusted until these qualities are achieved. 

To achieve the desired quality of zero mean residuals, both 

Other adjustments may include the uncertainties associated with the wind 

and plume forces. 

the radar azimuth residuals when the range and elevation residuals are in good 

agreement. 

trajectory is drifting from an otherwise good flight path. 

"good" means that the vehicle's altitude and speed are in good agreement as 

evidenced by the radar elevation and range residuals. 

The need for these adjustments may be seen when evaluating 

The azimuth residuals may indicate that the vehicle's estimated 

In this case, 

The winds effect the lateral trajectory characteristics significantly 

during the first stage. 

the tabulated wind data, may not be representative of that actually 

encountered by the vehicle in flight and may need changes estimated by the 

program, as reflected by the uncertainty levels specified, to more closely 

match the lateral trajectory. Adjusting wind and lateral plume force 

component uncertainty levels can indicate the need and significance of such an 

adjustment. 

The reference profile generated by the program, using 

Another significant parameter for first stage is the quaternion 

This parameter principally effects the degree of uncertainty levels. 

adjustment allowed by the filter in changing the vehicle's attitude to match 

accelerometer component measurements. Too large an uncertainty will produce 

large oscillatory deviations between the estimated trajectory and the 

indicated by the radar residuals. Too small an uncertainty will require the 
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estimated attitude to more closely agree with the results from integrating the 

rate gyro outputs. 

deviations observed in the radar residuals. 

This smaller uncertainty can produce large trajectory 

The adjustments above are based on experiences with processing the first 

stage flight. 

adjustments. 

initialization for the vehicle position and velocity vector components. 

initial state vector is obtained from the BET program described in Appendix C. 

The vector components are inserted into the BLKDAT routine's data statements. 

Additional adjustments for the second stage follows those for the first 

The second stage processing produces another set of possible 

The most important quantity for second stage processing is the 

This 

stage except, of course, for those associated with the SRB and winds. 

Corrections afforded by the SSME elements are weaker than anticipated, thus 

placing additional emphasis on the initializations discussed above. 

Second stage operation uses a larger integration step size than does 

first stage; however, as a result of its much longer duration, the processing 

time is longer. 

Performance results, Isp, for two flights are illustrated; STS-61C and 

STS-26. Results for other flights were presented in Reference 1121. Shown in 

Figures 5.-2 and 5.-3 are the SRB Isp's for STS-61C and STS-26 respectively. 

Shown in Figures 5.-4 and 5.-5 are the SSME Isp's for STS-61C stage 1 and 2 

respectively. 

NASA reconstruction techniques. 

These results are consistent with those obtained by using other 
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6 .  Conclusions and Recommendations 

The computer programs developed during this contract can contribute to 

the flight test data analysis efforts. 

ability to generate a best estimate of trajectory (BET), and have this data 

shortly after a flight. This BET data should be available much sooner than 

was previously the case, and flight analysis efforts can begin with more time 

available prior to meeting scheduled completion dates. 

The first contribution is from the 

The second contribution is from an alternative approach to analyzing the 

flight data. 

propulsion/trajectory reconstruction tool. 

from the propulsion disciplines, SRB and SSME, and incorporates the usual 

modeling from the trajectory disciplines, i.e. flight mechanics, aerodynamics, 

etc. 

This alternative approach is through an integrated 

This tool incorporates modeling 

The new approaches included in this reconstruction tool include the 

internal ballistics modeling associated with the SRB. By including this model 

within the frame work of Kalman filtering, it is possible to resolve biases by 

processing redundant sources influenced by the internal SRB processes. 

Previous approaches relied on single measurements, i.e. head pressure, and 

engineering judgments were used to eliminate the errors associated with the 

pressure measurement sensor’s biases. This approach allows the bias 

associated with the head pressure sensors to be resolved by processing 

accelerometer and head pressure measurements, both of which are influenced by 

101 

PRECEDING PAGE BLANK NOT FILMED 



ROGERS ENGINEERING 61 ASSOCIATES 

the same internal SRB processes. 

This new reconstruction tool does not contain the same modeling fidelity 

as other models that have been previously used for flight analysis. 

modeling, by necessity, has been simplified in order to have an efficient and 

useful tool. These other approaches have merit in their more detailed models, 

and, as a result of using a different approach to the reconstruction, offer an 

independent evaluation of the flight data. 

same reason, it offers an independent evaluation that uses an alternative 

methodology to arrive at the results. 

The 

This tool also has merit for the 

It is recommended that this reconstruction tool be used as an additional 

analysis tool to complement the other analysis efforts. 

tool, insights can be gained from its operation that can support judgments 

As a complementary 

used in the previously used methodologies. 
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A. Preprocessing Programs 

As seen in the discussions of the PFILTER program, several data files 

are required as input into this program. 

separation of data types into measurements, deterministic control inputs, and 

environmental conditions. These data are further segmented into functional 

areas of main engine, solid rocket booster, inertial measurement unit, etc. 

Each of these data should be reviewed, using the data plots provided by the 

preprocessing programs, prior to their use in the PFILTER program to assess 

the quality and consistency of this data. 

These data files are a logical 

The preprocessing programs, to be discussed in subsequent sections, 

perform several functions. VEHREF edits inertial measurement accelerometer 

and attitude data, and transforms this data into the boost reference frame 

used by PFILTER. 

or weight, flow rates and extracts the remainder of the propulsion 

measurements, i.e. SRB head pressure. REDRDR extracts the radar tracking data 

from the radar data file for those radars selected for use in PFILTER and 

LFILTER. 

measurements by the program MERGE to form an input file for PFILTER. 

PREPRCS converts main engine gas pressurant flows into mass, 

The results of these three programs are merged as the basic input 

The program CTRLTST extracts the deterministic control inputs, i.e. 

gimbal angles, for PFILTER. 

The final preprocessing program is METTST. This program extracts the 

meteorological data that is supplied to the PFILTER and LFILTER programs. The 
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primary purpose of this program is to convert the data into English system of 

units. 

Each of these preprocessing programs, except for REDRDR and MERGE, use 

the ACCESS routine to extract the identified data from the "STS" formatted 

data bases located on the W S .  
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A.l MERGE Preprocessing Program 

The program MERGE is simply a program to read data from three input 

files and merge them into a single output file. The three input files are: 

Data File Unit Number 

1 
2 
3 

The output file is: 

Data File Unit Number 

4 

Data File Name 

REFIPT.DATA 
PROIPT.DATA 
TRACK. DAT 

Data File Name 

REAMEA. DATA 

I 
1 

The input files are produced by VEHREF, PREPRCS and REDRDR respectively. 

The following describes the program control variables and code symbol 

definitions: 

I 
I 
1 
R 
I 

Symbol Units Description 

IMAX - maximum number of time points to be read 
IBEGIN - time point to begin storing data for output 
I END - last time point for stored data 
TIME sec current time for all data files 
DIMU * IMU data; accelerometer, attitude and rates 
DPROL ** main engine data record; chamber pressure, 

pressurant flow rates, fuel volumetric flow 
rate, fuel temperature, and fuel pressure 

DPROS lb/in2 SRB head pressures 
DRDR *** radar track azimuth, elevation and range 
* units are; ft/sec2, deg, and deg/sec. respectively 
** units are; lb/in2, lb/sec, gal/min, deg R, and lb/in2 respectively 
*** units are; deg, deg, and ft respectively 
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A.2 VEHREF Preprocessing Program 

VEHREF extracts IMU data for processing. 

BET programs use this data. 

merged with other measurement data in the MERGE preprocessing program. 

The propulsion estimation and 

Prior to use in the PFILTER program, this data is 

VEHREF reads an input file and produces two output files. The input 

file is 

Data File Unit Number Data File Name 

1 MSDREF.DAT 

This file contains the MSID's for the data to be extracted from the STS data 

base. These MSID's are listed below 

MS ID 

V95H0050C 
V95H0051C 
V95H0053C 
V95H0054C 
V95LOO65C 
V95LOO66C 
V9 5LO 0 6 7 C 
V95H1050C 
V9 5H1051C 
V9 5H105 3C 
V95H1054C 
V9 5L106 5C 
V95L1066C 
V9 5L1067C 
V95H2050C 
V95H205 1C 
V95H2053C 
V95H2054C 
V9 5L206 5C 
V9 5L206 6C 
V9 5L2067C 

Units 

rad 
rad 
rad 
rad 
f t/sec 
ft/sec 
ft/sec 
rad 
rad 
rad 
rad 
f t/sec 
f t/sec 
ft/sec 
rad 
rad 
rad 
rad 
f t/sec 
ft/sec 
f t/sec 

Ce scr ip t ion 

IMU 1 comp pitch resolver angle 
IMU 1 comp azimuth resolver angle 
IMU 1 comp inner roll resolver angle 
IMU 1 comp outer roll resolver angle 
IMU 1 accum sensed change X vel 
IMU 1 accum sensed change Y vel 
IMU 1 accum sensed change Z vel 
IMU 2 comp pitch resolver angle 
IMU 2 comp azimuth resolver angle 
IMU 2 comp inner roll resolver angle 
IMU 2 comp outer roll resolver angle 
IMU 2 accum sensed change X vel 
IMU 2 accum sensed change Y vel 
IMU 2 accum sensed change 2 vel 
IMU 3 comp pitch resolver angle 
IMU 3 comp azimuth resolver angle 
IMU 3 comp inner roll resolver angle 
IMU 3 comp outer roll resolver angle 
IMU 3 accum sensed change X vel 
IMU 3 accum sensed change Y vel 
IMU 3 accum sensed change 2 vel 
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V95H3526C deg/sec pitch rate, flight body-inertial 
V95H3527C deg/sec yaw rate, flight body-inertial 
V95H3528C deg/sec roll rate, flight body-inertial 
V95UO163C g' s total load factor 

The output files are 

Data File Unit Number 

3 
9 

Data File Name 

REFPLT.DATA 
REFIPT.DATA 

The first of these files is a plot file containing line printer plots of the 

resulting output data in REFIPT.DAT. 

Program flow control is accomplished using the following variables 

defined as: 

Symbol Units Description 

IST - number of time points between first time and 
corresponding first measurement time after 
lift-off 

TSTART sec first time point and also time point for "snap" 
initialization prior to main engine ignition 

TSTOP sec stopping time point for data outputs 
SRATE sec-l sample rate for measurement outputs 

The program utilizes the resolver angles for each IMU and the cluster to 

Mean-50 transformation matrix to compute a transformation matrix from the body 

to boost reference frame. The approach is to take a "snap shot" of the 

resolver angles prior to main engine ignition, and, assuming the body 
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orientation in the boost reference is exactly a 90' pitch angle, compute a 

Mean-50 (M50) to boost reference (BR) transformation matrix. This approach is 

approximate due to the earth rotation from the time of the snap shot until 

lift-off; however, the computed attitudes are in error by less than 0.1O. 

The equation to compute these transformations are given as: 

BRcB I BRcM50 B M50 T ( C  ) 

Math Symbol Units Description 

A- 1 

A- 2 

TBBRIO 

REFSMT 
PITCH 
YAW 
ROLI 
R O W  

TMP4/5 

CM50BR 

CBI 

- 

rad 
rad 
rad 
rad 

- 
- 

- 

transformation matrix from body to BR 
at t-0 

transformation matrix from cluster to M50 
pitch resolver angle 
yaw resolver angle 
inner roll resolver znkle 
outer roll resolver angle 

M50 to body transformation matrix 

M50 to BR transformation matrix 

body to BR transformation matrix 

From the CBI matrix, body attitude angles of roll, pitch and yaw are computed 

for each IMU. The CM50BR and REFSMT matrices are used to transform the 

platform sensed velocity changes into BR accelerations. 

Before this program can be run, the REFSMT matrix data must be extracted 

from the data base. There are three of these matrices each containing 9 
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elements. 

following MSID's 

This data is obtained using the STSDB program to tabulate the 

MSID Units 

v99u345oc - 
V9 9U347 6 C - 

- 

Description 

REFSMT's for IN'S 1, 2 & 3 (27 total) 

These data are incorporated into the VEHREF program as FORTRAN data 

statements. 

The accelerations are computed by subtracting the current accumulated 

sensed velocity from its previous time step value. 

of velocity, this is given as: 

For the three components 

Math 

All 

1, 

b L D  

All ll, - b m  

%,L~ 9 9, for the next cycle 

Symbol Units Description 

DV f t/sec velocity difference (deltas) 

VAL f t/sec current value of accumulated sensed 
ve loc i ty 

VOLD f t/sec previous value of sensed velocity 

The initial value of VOLD is set to zero. 

A- 3 

A- 4 
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The resulting accelerations, AI'S, from the three IN'S are averaged to 

A test is made to determine the quality of yield a mean acceleration vector. 

the data at the current time point. 

components of the AI'S of two IMU's. If any of these components differ by 

greater than 0.15 ft/sec, then the previous time's computed mean value for 

that component is used for the current time point. 

computed only when this test fails, indicating good quality data. The mean 

vector, either retained from a previous time point or from the current time 

point, is output. This editing is necessary as a result of extremely large 

and error sporadic spikes in the data. 

This test consists of comparing the 

A new mean vector is 

The body attitude euler angles, roll, pitch and yaw, are computed from 

the body to boost reference inertial direction cosine matrix as: 

4 = tan-'( BR~,,,B / BR~3,,B 

B - sin-'( - B R ~ , , F  
+ - tan-'( BR~,,,B / BR~l,,B ) 

A- 5 

A- 0 

A- 7 

Mean values of these attitudes are also computed and tested as described for 

the acceleration components above. 

The resulting outputs from VEHREF are described below. 

Symbol Units Description 

DVM f t/sec current or last "good" mean acceleration vector 
THTM deg current or last "good" mean attitude components 
OMEG deg/sec body-inertial rates. 

1 
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A.3 PREPRCS Preprocessing Program 

The PREPRCS program converts gas pressurant volumetric flows into mass, 

or weight, flow rates. Also, the program extracts other propulsion 

measurements used by PFILTER. 

single input file: 

As with the preceding program, there is a 

Data File Unit Number 

1 

Data File Name 

MSDMEA. DAT 

This file contains the MSID's for the data to be extracted from the STS 

formatted data base files. These MSID's are listed below: 

MSID 

V4TX15 9 6 E 
V4l~15 9 8 E 
V41X1603E 
V41X16 6 1E 
V41X16 6 2 E 
V41X1663E 
E41P1068D 
E41P2068D 
E41P306 8D 
V41P 11 6 OA 
V41P12 6 OA 
V4 1 P13 6 OA 
V41T117 lA 
V4lT1271A 
V41T 13 7 1A 
V41T116 1A 
V41T1261A 
V41T13 6 1A 
E41P1016D 
E4 1P2 0 16D 
E41P 3 0 16D 
E41R1021D 
E41R2021D 

Units 

event 
event 
event 
event 
event 
event 
psia 
psia 
psia 
psia 
psia 
psia 
deg F 
deg F 
deg F 
deg F 
deg F 
deg F 
ps ia 
psia 
psia 
gal/min 
gal/min 

Description 

MPS-GO2 press sov 1 close pwr on 
MPS-GO2 press sov 2 close pwr on 
MPS-GO2 press sov 3 close pwr on 
MPS-GH2 press sov 1 close pwr on 
MPS-GH2 press sov 2 close pwr on 
MPS-GH2 press sov 3 close pwr on 
ME-1 ox tk pressurant press 
ME-2 ox tk pressurant press 
ME-3 ox tk pressurant press 
MPS-ENG no 1 GH2 outlet temp 
MPS-ENG no 2 GH2 outlet temp 
MPS-ENG no 3 GH2 outlet temp 
MPS-ENG no 1 GOX press outlet temp 
MPS-ENG no 2 GOX press outlet temp 
MPS-ENG no 3 GOX press outlet temp 
MPS-ENG no 1 GH2 press outlet temp 
MPS-ENG no 2 GH2 press outlet temp 
MPS-ENG no 3 GH2 press outlet temp 
ME-1 MCC pressure ch A 
ME-2 MCC pressure ch A 
ME-3 MCC pressure ch A 
ME-1 fuel flowrate (avg) 
ME-2 fuel flowrate (avg) 
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E41R302 1D 
E41P10 18D 
E41P2018D 
E41P3018D 
E41T1019D 
E41T2019D 
E41T30 19D 
B47P1300C 
B47P2300C 

gal/min 
psia 
psia 
psia 
deg R 
deg R 
deg R 
psia 
psia 

ME-3 fuel flowrate (avg) 
ME-1 LPFT disch press (avg) 
ME-2 LPFT disch press (avg) 
ME-3 LPFT disch press (avg) 
ME-1 LPFT disch temp (avg) 
ME-2 LPFT disch temp (avg) 
ME-3 LPFT disch temp (avg) 
LH press A SRM chamber 
EW press A SRM chamber 

The output files are: 

Data File Name 

3 
9 

PROPLT.DATA 
PROIPT.DATA 

The first of these is a plot file containing line printer plots of the 

resulting output data PROIPT. 

The conversion from volume to weight flow rates for the gas pressurants 

corresponds to the process used by the CONVRT quick look processing [8]. 

Standard routines are used to compute the density from temperature and 

pressure. 

routine. 

In PREPRCS, these routines are supported by data from a block data 

The routines used to perform this conversion are described as: 

Routine Description 

BLKDATA 
FINDD computes density 
PRESS 
VPN function to evaluate polynomial 
DPDD 

contains gas property and other constants 

computes pressure from density and temperature 

computes change in pressure with density 
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Program flow control is accomplished using the following variables: 

Symbol Units Description 

TSTART sec first measurement time 
TSTOP sec stopping point for data output 
SRATE sec-l sample rate for measurement outputs 
TSTAGE sec time to force to zero SRB head pressures 

The following variables and descriptions correspond to those used in the 

CONVRT quick look program. 

Symbol Units Description 

FCV - flow control valve open (1) or closed (0) 
PXM psi fuel and oxidizer pressurant pressures 
TXM deg F fuel and oxidizer pressurant temperatures 
WEHE lb/sec computed fuel and oxidizer pressurant flow rates 

An iteration procedure is used to compute the WEHE variables above using the 

TOL parameter contained in BLKDATA. When the previously computed value of 

WEHE differs by less than or is equal to TOL, then the iteration is terminated 

and the last value of WEHE is assumed correct. 

In addition to the last variable above for output, the following 

describes the PREPRCS outputs 

Symbol Units Description 

PCM psi measured chamber pressure 
ya gal/min fuel volumetric flow rate 
PH PS i fuel pressure 
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TH deg R 
VAL 31/32 psi 

fuel temperature 
left and right hand SRB head pressure respectively 

I 
I 

I 
I 
I 

I 
1 
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1 RADAR. DAT 
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A.4 REDRDR Preprocessing Program 

REDRDR extracts data for specified radars from a data file containing 

the composite tracking data from ETR/KSC. 

data included on the composite. 

the BET processing or 3 for stage I and stage I1 propulsion estimation 

programs based on the user's specification and modification to the data 

statements in the program. 

Typically, there are 6 to 9 radars' 

This program extracts either 5 of these for 

REDRDR reads the following data file 

This file is generated by a VAX/VMS copy direct from a data tape supplied by 

ETR/KSC. At each time point, azimuth, elevation and range radar data are 

read, and from these, a new data file of the selected radar's data is created: 

Data File Unit Number Data File Name 

3 TRACK. DAT 

I 
1 
I 

No plots are generated by this preprocessing program. 
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The following are program flow control variables: 

Symbol Description 

NOW 
KOUT 
TINC time increment for outputs. 

number of radar sites to output(3 for FILTER/5 for LFILTER) 
corresponding sequential number for site selected i.e.1,3,. 

The following are the input and output variables used in the program: 

Symbol Units 

TIME sec 

Description 

current time associated with each of the input 
radars' measurement arrays 
array of input azimuth measurements 
array of input elevation measurements 
array of input range measurements 
array of selected output azimuth measurements 
array of selected output elevation measurements 
array of selected output range measurements 

116 

I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
1 
I 
I 
I 
I 
I 

I1 I 

ROGERS ENGINEERING & ASSOCIATES 

A.5 CTRLTST Preprocessing Program 

This program extracts the main engine power level command, main engine 

gimbal angles, and SRB actuator displacements from the STS formatted data base 

files. Additionally, CTRLTST computes the vehicle attitudes, based on the 

approach presented in section A.2, and extracts the body rates as sensed by 

rate gyros. The input file is: 

Data File Unit Number Data File Name 

1 MSDCTL.DAT 

This file contains the MSID's for the data to be extracted. These MSID's are: . 
MS ID 

B58H1150C 
B5 8H115 1C 
B5 8H2 150C 
B5 8H2 15 1C 
V9OU1948C 
V58H1100A 
V58H1150A 
V5 8H1200A 
V58H1250A 
V58H1300A 
V5 8H13 50A 
V95H0051C 

V95H2054C 
V95H3526C 
V9 5H35 27C 
V95H352 8C 

Units 

in 
in 
in 
in 

deg 
deg 
deg 
deg 
deg 
deg 

- 

rad 

rad 
de g/s e c 
de g/s e c 
deg/sec 

Description 

LH position TVC rock actuator 
LH position TVC tilt actuator 
RH position TVC rock actuator 
RH position TVC tilt actuator 
commanded SSME throttle setting 
MPS ENG 1 p actr posn 
MPS ENG 1 y actr posn 
MPS ENG 2 p actr posn 
MPS ENG 2 y actr posn 
MPS ENG 3 p actr posn 
MPS ENG 3 y actr posn 

see section A.2 

pitch rate, flight body-inertial 
yaw rate, flight body-inertial 
roll rate, flight body-inertial 
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The output files generated are: 

Data File Unit Number Data File Name 

3 
9 

CTLIPT.DATA 
CTLPLT.DATA 

The first file also contains the control input data and the second contains 

plots of the data extracted from the data base files. 

Program flow control is accomplished using the following variables: 

Symbol Units Description 

TSTART sec first measurement time 
TSTOP sec stopping point for data output 
SRATE sec-l sample rate for measurement outputs 

The power level in converted from a count value into a factor where 100 

counts corresponds to 1.0. 

I 
I 

1 
I 
I 
I 

I 
I 
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A.6 METTST Preprocessing Program 

METTST extracts data for processing. The propulsion estimation and BET 

programs use this data. 

METTST reads the following input data file: 

Data File Unit Number Data File Name 

1 MSDMET.DAT 

This file contains the MSID's for the data extracted from the STS formatted 

Meteorological data files. These MSID's are listed below 

MS ID Units Description 

us 
WD 
DENS 
PRESS 
TEMP 
UNCWS 
UNCWD 
UNCD 
UNCPR 
UNCT 

m/sec 
deg 

C0 
m/sec 
deg 

C0 

wind speed 
wind direction from north 
ambient atmospheric density 
ambient atmospheric pressure 
ambient atmospheric temperature 
uncertainty in wind speed 
uncertainty in wind direction 
uncertainty in density 
uncertainty in pressure 
uncertainty in temperature 

The following output data file, including plots, is generated. 

Data File Unit Number Data File Name 

3 METIPT.DATA 

Program flow control is accomplished using the following variables, in 
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metric units, defined as 

Symbol Units Description 

TSTART m first measurement altitude 
TSTOP m stopping altitude for data output 
SRATE m-l sample rate measurement output 

The data specified by the MSID’s input the input file are converted to 

the following variables in English units 

Symbol Units 

ALT 
DENS 
PRES 
VSOUND 
vwx 
VWY 
UDENS 
UPRES 
UTEMP 
uvwx 
WWY 

ft 
lb/sec2/f t4 
lb/f t2 
f t/sec 
ft/sec 
f t/sec 
lb/sec2/f t4 
lb/f t2 
R0 
ft/sec 
f t/sec 

VSOUND is computed from 

Vsound = 49.02 J T. 

Description 

altitude, independent variable for data 
ambient atmospheric density 
ambient atmospheric pressure 
speed of sound 
northward component of wind velocity 
eastward component of wind velocity 
uncertainty in density 
uncertainty in pressure 
uncertainty in temperature 
uncertainty in northward wind velocity 
uncertainty in eastward wind velocity 

TEMP as: 
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US and WD are resolved into north/south and east/west components by the 

following: 

I 
i 
I 

V, - -Vwsin(&) 

vw = -V*OS(&). 

Math Symbol Units Description 

f t/sec 
f t/sec 
deg wind direction from north 
ft/sec wind speed 

north component of wind velocity 
east component of wind velocity 

A- 9 

A- 10 

I 
I 
I 

I 
I 
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B. Plotting Program - PLTFIL 

One of the outputs of the propulsion estimation, FILTER, and the BET 

programs, LFILTER, is a data file containing the Kalman filter state variable 

estimates and measurement residuals. 

line printer plot program for a quick assessment of the quality of the results 

generated. 

propulsion estimation program; however, a corresponding program is set-up for 

the BET program LFILTER. 

This output file is plotted using this 

The discussion in this section concerns the outputs of the 

The filter state variable estimate outputs from the FILTER program are 

written to an output file FILOUT.DATA as a function of time. 

the file containing the y-axis plot labels, YLABFIL.DAT, is read by PLTFIL as 

This file and 

Data File Unit Number 

1 
2 

The output file is 

Data File Unit Number 

3 

Data File Name 

FILOUT.DATA 
YLABFIL. DAT 

Data File Name 

PLTFIL.DATA 

This file contains the plot images for later printing on the line printer. 

This file can be viewed on a terminal screen prior to routing to the line 
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printer. 

Program flow in controlled from the input file assuming that there is no 

change from the standard number of states and measurements processed. 

Data written on the file includes the state variable estimates and the 

associated variances which are used to establish the upper and lower bounds. 

The values of the state estimates are plotted with the square-root of the 

associated variance added to and subtracted from the estimate to produce three 

curves on one plot for each state variable. 

Each measurement residual is similarly plotted. The residual and plus 

and minus values of residual variance square-root are plotted. 

Three subroutines are needed to generatp these plots. These are PLOT4, 

ADDCHR, and INCADD. The first, PLOT4, serves to generate the plot scaling, 

the placement of the points onto the plot, and to generate the plot labeling 

by entry calls to PLOT2, PLOT3 and PLOT4 respectively. 

INCADD fill in blanks or other characters as needed for each output line 

within a plot. 

Subroutines ADDCHR and 

The subroutines above are used in all plotting programs developed. 

These include the data preprocessing and outputs of the estimation programs. 
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C .  Best Estimate of Trajectory Program 

C.l Introduction 

During the course of development and verification of the propulsion 

estimation program, results from a trajectory reconstruction program, TRW's 

W E T 5  [ll], were used for comparison. Also, in some trials, the estimates 

from this program were used as inputs, i.e. accelerations, These estimates 

provided better data than the data from the STS data base, prompting the 

desire to have a BET and to have it more quickly than currently available. 

This objective was also an alternative path considered as part of the original 

contract if the propulsion estimation program effort was not successful. 

BET program was developed initially to produce time history estimates of the 

following variables required by the propulsion estimation program: 

A 

1) acceleration 
2)  at  ti tude 

3 )  attitude rates. 
and 

These variables are inertially sensed inputs required by the propulsion 

estimation program. These data can be obtained from the STS data base, 

however, the resulting data is of poor quality. 

As indicated above, the BET program can used as a preprocessing program, 

providing better input data into the propulsion estimation program, or as a 

tool to analyze the contributory trajectory profile data elements, i.e. radar 
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tracking data, for data quality and consistency. In the latter case, this 

tool can be used to evaluate radar tracking site selection for the propulsion 

estimation program. With the availability of this tool, additional variables 

were identified for output from this BET program. These additional outputs 

include other trajectory variables, i.e. flight path angle, and atmospheric 

dependent quantities, i.e. dynamic pressure. 

The sources of data for this BET program are the same as those for the 

more data intensive propulsion estimation program. The data sources include 

the STS data base, the meteorological data base and composite radar tracking 

data tapes from the Eastern Test Range (ETR). 

This BET program uses some of the same routines as the propulsion. 

estimation program. However, in this case, the dynamics associated with the 

system modeled are described by a linear process. 

in the BET program are nonlinear; however, the linearized Kalman filter is 

suitable for this application. 

The dynamical process is the evolution of the vehicle position as 

The measurements processed 

indicated by the Inertial Measurement Unit (IMU). 

sensed accelerations from accelerometers mounted on this inertially referenced 

and stabilized platform. 

biases and small misalignments. 

correct the motion evolution via the Kalman filter which processes these 

measurements. The filter provides compensating corrections to the sensed 

accelerations accounting for accelerometer biases, platform misalignment, and 

radar azimuth, elevation and range biases. The inclusion of these error 

This position is based on 

These sensed accelerations are assumed corrupted by 

The radar track measurements are used to 
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sources and the enhanced UDUT form of the Kalman filtering algorithm are 

significant departures from the TRW LRBET5 approach. 

The BET program is actually two programs operated in a two step 

processing sequence. The first is the Kalman filtering program, LFILTER, 

using the UDUT algorithm, and the second is a smoothing program, RTSSMO, based 

on the Rauch-Tung-Striebel smoothing algorithm [ 3 ] .  The filtering program is 

operated iteratively until the proper initial filter and process noise 

parameters are achieved. The combination is operated iteratively, with the 

outputs of the smoothing program used to form new inputs into the filtering 

program, until the resulting estimates no longer change significantly. 

The filtering/smoothing process above is uncoupled from the computations 

involving atmospheric dependent variables. That is, atmospheric dependent 

variables are computed based on estimated vehicle states, i.e. velocity; 

however, the estimated states are not dependent on the atmospheric variables. 

The general form of the linearized Kalman filter algorithm and the 

Rauch-Tung-Striebel smoothing algorithm are summarized in Table C-1 and C-2 

respectively. 
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Table C-1 

Linearized Kalman Filter Algorithm 
(linear dynamics and nonlinear measurements) 
( continuous time - discrete measurements ) 

System Model 

Initial Conditions Z(O) = N[&,P,I 

Other Assumptions E[w(t)&'] - 0 for all t and k 
Auxiliary Relations O - I + F(t)At, Q - Q(t)At 

State Estimate 
Propagation &(+I = 0 &-I(+) 

Error Covariance 
Propagation 

Gain Matrix 
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Table C-2 

Rauch-Tung-Striebel Smoothing Algorithm 
( discrete time at measurement times ) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

State Estimate .. 
Propagation &IN &(+I + Ak ( &+lIN - .&+I(') 

Error Covariance 
Propagat ion 

&IN = &(+) and PNlN - PN(+) for k = N-1 

I 
I 
I 
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C.2 Mathematical Equation Descriptions 

C.2.1 System Equations 

The following vector differential equation describes the IMU indicated 

vehicle position in an inertial frame corrupted with the error sources 

assumed: 

c - 1  

- resulting boost reference inertial position vector 
- net acceleration by gravity and sensed acceleration 
- platform misalignment induced acceleration error 
- accelerometer bias error 
= accelerometer scale factor induced error 

This equation is integrated twice to obtain the IMU indicated vehicle 

position. This indicated position would be in error as a result of the errors 

assumed. 

The platform misalignment state, 6 1 ,  accelerometer bias state, ab, and 

the accelerometer scale factor error, eF, are adjoined to the IMU indicated 
position and velocity to form the system error state vector for the Kalman 

filtering/smoothing algorithms. In addition to these states, error states 

associated with the radar measurements are also included. For each radar, 
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bias states for azimuth, elevation and range are included in the state vector 

representation. These state vector elements are summarized in Table C-3. 

The inertial frame chosen for the system above is the boost reference 

inertial frame (Appendix E). This frame is also that used for the propulsion 

estimation program. 

referenced in this frame. 

Each of the vector elements in equation C-1 are 

The IMU acceleration data, assumed represented by equation C-1, is 

extracted from the STS data base by the preprocessing program VEHREF. 

addition to the acceleration data, the vehicle attitude and attitude rates are 

also extracted by this preprocessing program. 

program. 

In 

These data are used in the BET 
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Table C-3 

State Vector Elements Modeled in LFILTER 

E 1 emen t 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Units Description 

ft 
ft 
ft 
f t/sec 
f t/sec 
f t/sec 
rad 
rad 
rad 
ft/sec2 
ft/sec2 
ft/sec2 - 

deg 
ft 

x-position in boost reference inertial (BR) 
y-position in boost reference inertial frame 
z-position in boost reference inertial frame 
x-velocity in boost reference inertial (BR) 
y-velocity in boost reference inertial frame 
z-velocity in boost reference inertial frame 
platform tilt error about x in BR frame 
platform tilt error about y in BR frame 
platform tilt error about z in BR frame 
x-component accelerometer bias 
y-crmponent accelerometer bias 
z-component accelerometer bias 
x-component accelerometer scale factor error 
y-component accelerometer scale factor error 
z-component accelerometer scale factor error 
radar 1 azimuth bias 
radar 1 elevation bias 
radar 1 range bias 
radar 2 azimuth bias 
radar 2 elevation bias 
radar 2 range bias 
radar 3 azimuth bias 
radar 3 elevation bias 
radar 3 range bias 
radar 4 azimuth bias 
radar 4 elevation bias 
radar 4 range bias 
radar 5 azimuth bias 
radar 5 elevation bias 
radar 5 range bias 
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C.2.2 Measurement Equations 

The measurements processed in the Kalman filtering algorithm are the 

azimuth, elevation and range measurements from the C-band radars operated by 

the ETR. These radars are located at Kennedy Space Center (KSC), on Wallops 

Island, and on the outlying islands of Bermuda and Bahamas. 

The azimuth, elevation and range measurements, defined in a local level 

topographic frame, are nonlinear functions of the boose reference vehicle 

position. This functional dependence is defined by the following equations. 

The components of the vehicle position vector relative to the radar site 

location in the local level topographic frame (Appendix E) is given by; 

c-2 

where 

-sin(lat) cos (lat) 0 
LLcECF I -sin(lat)cos(lon) -sin(lat)sin(lon) cos(1at) c-3 

cos(lat)cos(lon) cos(lat)sin(lon) sin(1at) 

lat - radar site geodetic latitude (Appendix E) 
lon - radar site longitude 
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cos (ut)  s in(  u t )  0 
ECFcECI I sin(  u t )  cos (ut)  0 

0 0 1 

u - ear th rotation ra te  (Appendix E) 

t - elapsed time from l i f t o f f  

and, 

c-4 

c-5 

The superscripts re fer  to local level (LL),  earth ccntered fixed ( E C F ) ,  earth 

centered i n e r t i a l  (ECI), and boost reference (BR) .  

The range, azimuth and elevation (Appendix E) from the vehicle t o  the 

radar s i t e  then is given by; 

p J( X2 + y2 + Z2 ) + pb + Ap 

A = tan-'( x/y ) + Ab 

E = tan-'( z/J( x2 + y2 ) ) + E, + AE 

where 

p 

pb = radar range bias 

Ap 

A = azimuth from radar s i t e  t o  vehicle 

= range from radar s i t e  t o  vehicle 

- radar range correction due t o  refraction 

C - 6  

c-7 

C - 8  

1 
I 
1 
I 
I 
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A,, - radar azimuth bias 
E - elevation from radar site to vehicle 
l$, - radar elevation bias 
AE - radar elevation correction due to refraction 

The bias terms are included in the state vector representation summarized in 

Table C-3 for each radar. 

These radars begin tracking the vehicle shortly after launch, -12 

seconds, and continue tracking through main engine cutoff, -520 seconds. Two 

of the KSC radars usually track the solid rocket boosters at the end of stage 

I, -125 seconds. 

Generally, 6 to 9 radars are available and tracking with the tracking 

intermittent and not continuous during the boost phase of flight. 

program is setup to use 5 of these radars and each measurement, i.e. range, 

processed individually. 

containing the composite radar tracking data by the preprocessing program 

REDRDR. The Kalman filtering program requires the radar site location for 

each radar chosen and this is available with the data supplied by ETR/KSC. 

The measurements processed are summarized in Table C-4. 

The BET 

The radar data used is extracted from the file 

135 



ROGERS ENGINEERING & ASSOCIATES 

Table C-4 

Measurement Vector Elements Modeled i n  LFILTER 

E 1 emen t 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
13 
14 
15 

Units Description 

radar 1 azimuth 
radar 1 elevation 
radar 1 range 
radar 2 azimuth 
radar 2 elevation 
radar 2 range 
radar 3 azimuth 
radar 3 elevation 
radar 3 range 
radar 4 azimuth 
radar 4 elevation 
radar 4 range 
radar 5 azimuth 
radar 5 elevation 
radar 5 range 
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C.3 Auxiliary Outputs 

Additional variables from the filtering/smoothing processing are 

provided. These variables are formed from the state variables computed in the 

estimation process. The variables and their l-sigma bounds are provided. 

These variables are output in a 90 word element array, for each time 

point, which is then accessed by other interested users of the data. The 

entire 90 word array is not filled in the outputs provided by this BET. 

outputs from this BET and the corresponding outputs from the TRW W E T 5  are 

provided in the same locations in this array. 

variables provided by the BET program. 

The 

Table C-5 summarizes the output 

For the variables indicated in Table C-5 that are not self explanatory, 

the following are definitions of these variables. 

C.3.1 Body Velocity and Accelerations 

These vectors are produced by transforming the inertial (boost 

reference) vectors into the body frame (Appendix E) as 

aload - J ( aI2 + aZ2 + 83 2 1. 
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C.3.2 Inertial Velocity Magnitude and Flight Path Angles 

These variables use the inertial velocity components in boost reference 

(see Appendix E) as 

v, = J ( v12 + v22 + v32 ) 

where the v's are components of P ' ~ ' .  

where 

Veast 
Vnorth - 
vUP 

I LLcEF EFcBR v(BR). 

c-12 

C-13 

C-14 

C-15 

C.3.3 Wind Relative Velocity and Angles 

The wind, from the meteorological inputs as a function of altitude, is 

first transformed into body axis (Appendix E) and differenced to obtain the 

wind relative velocity vector as 

Then 

C-16 
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v, - J ( v: + v22 + v32 ) C-17 

where the v's are components of 

Angle of attack and side slip (see Appendix E) are then given as 

a - tan-' ( v3 / v1 

and 

@ - sin-' ( v2 / V, 1. 

C-18 

c-19 

C.3.4 Mach number and Dynamic pressure 

Mach number and dynamic pressure computations use the input 

meteorological data of ambient temperature, T, and density, p ,  from the of 

estimated altitude as 

M - V , / a  

and 

q - 1/2 P VW2 

where speed of sound, a, is computed as 

a - 49.02 J T. 
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Table C-5 

BET Output Variables 

Location 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
21 
22 
23 
24 
25 
45 
46 
47 
49 
50 
51 
55 
56 
57 
68 
72 
7 4  
75 
76 
77 
79 
80 
81 
83 
a4 
85 
86 
87 

Variable 

Time 
XM 
m 
ZM 
XDM 
YDM 
ZDM 
XDDM 
YDDM 
ZDDM 
XDB 
YDB 
ZDB 
XDDB 
YDDB 
ZDDB 
R 
Q 
P 
PSID 
ALAMDA 
H 
VM 
GAMMAM 
PSIM 
VTD 
ALPHA 
QBAR 
QBALPH 
QBBETA 
AM 
T 
PR 
RHOAMB 
ALOAD 
BETA 
EULERY 
EULERP 
EULERR 

Description Units 

Elapsed time from liftoff 
Boost Reference x-position 
Boost Reference y-position 
Boost Reference z-position 
Boost Reference x-velocity 
Boost Reference y-velocity 
Boost Reference z-velocity 
Boost Reference x-acceleration 
Boost Reference y-acceleration 
Boost Reference z-acceleration 
Body x-velocity component 
Body y-velocity component 
Body z-velocity component 
Body x-acceleration component 
Body y-acceleration component 
Body z-acceleration component 
Boost Reference yaw body rate 
Boost Reference pitch body rate 
Boost Reference roll body rate 
Vehicle latitude 
Vehicle longitude 
Vehicle altitude 
Boost Reference velocity magnitude 
Vertical flight path angle 
Lateral flight path angle 
Wind relative velocity magnitude 
Wind relative angle of attack 
Dynamic pressure 
QBAR and ALPHA product 
QBAR and BETA product 
Mach number 
Ambient air temperature 
Ambient air pressure 
Ambient air density 
Sensed acceleration magnitude 
Wind relative angle of side s l i p  
Boost Reference yaw Euler angle 
Boost Reference pitch Euler angle 
Boost Reference roll Euler angle 
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sec 
ft 
ft 
ft 
ft/sec 
ft/sec 
f t/sec 
ft/sec2 
ft/sec2 
ft/sec2 
ft/sec 
f t/sec 
f t/sec 
ft/sec2 
ft/sec2 
ft/sec2 
de g/s e c 
de g/s e c 
de g/s e c 
del3 
deg 

deg 
deg 
f t/sec 
deg 
PSf 

ft 
f t/sec 

deg psf 
deg psf 

R o  
PSf 
lb sec2/ft4 
g's 
deg 
deg 
deg 
deg 
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C . 4  Program Descriptions 

4 
1 
I 
I 

C . 4 . 1  LFILTER Program 

The program LFILTER organization is illustrated in Figure C-1. Each of 

the routines shown, their function and equations implemented, will be 

discussed in turn in the subsequent subsections. 

mathematical notation and the symbology used in the FORTRAN code will also be 

presented. 

The correspondence of the 

I 
I 
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time - time + hstep - 
UDTIME 

n FILTER main 

BLOCK DATA program constants c 
INITIL U 
I 

GETDAT L-i 
F? ASSESS 

initialize filter 
states and covariances 

propagate states and 
covariances to next time 

test for measurement 
avai lab i 1 i ty 

read measurement data 

update filter state and 
covariances using radar 
measurements 

compute output array 

(-) 

Figure C-1: LFILTER Program Flow 
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C.4.1.1 FILTER routine 

The main routine, FILTER, controls the program flow. It opens and reads 

data files, initializes arrays based on data contained in the BLOCK DATA 

routine by calling the INITIL subroutine, integrates the state variables up to 

a measurement time with subroutine UDTIME, processes the measurements and 

updates the state variables in the subroutine RADAR, produces the output 

variables shown in Table C-3 in the ASSESS subroutine, and outputs filter 

quality data in subroutine OUTPUT. 

The program flow in controlled by specifying a maximum or stop time. If 

the current filter time is less than the maximum time specified, the program 

continues the time integration and measurement processing. 

processing, data is stored for later plotting or processing by the smoothing 

program. 

the ISMOOTH flag in BLOCK DATA to 1. 

During the 

Data outputs for the smoothing processing is activated by setting 

Data files produced by the preprocessing programs previously described 

are also used in this program. The input data files read are: 

Data File Unit Number 

2 
3 
4 

Data File Name 

TRACK. DAT 
REFIPT.DAT 
METDAT.DAT 

TRACK.DAT contains the radar tracking measurements processed in the filter 

algorithm. REFIPT.DAT contains the reference IMU acceleration, attitude and 
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attitude rate data. 

atmospheric dependent variables computed. 

METDAT.DAT contains the meteorological data used for the 

Four files are produced by LFILTER. The output files written are: 

Data File Unit Number Data File Name 

LFIUIUT.DAT 
SREFIPT.DAT 
SMOIPT.DAT 
TAS SOUT . DAT 

LFILOUT.DAT contains filter state variable estimates and measurement residuals 

for quality checks on the filter's outputs. SREFIPT.DAT contains the 

reference inputs required for the smoothing program. SMOIPT.DAT contains 

filter products for the smoothing processing cycle. LASSOUT.DAT contains the 

output variables summarized in Table C-3. 
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C.4.1.2 BLOCK DATA routine 

The BLOCK DATA routine contains data to support the program flow 

control, i.e. TMAX for the maximum (stop) time, and modeling data that may be 

frequently changed to refine the filter's estimates and to evaluate aspects of 

the filter's output quality. 

The following program control values are specified in BLOCK DATA. 

Symbol Units Common Description 

TIME sec TIMDAT current filter time after liftoff 
TMAX sec TIMDAT maximum operation time after liftoff 
HSTEP sec TIMDAT time integration step size 
TSAMP sec TIMDAT measurement sample time increment 
N - LINFMT number of dynamic and bias states 
NP - NOISES number of process noise(bias) states 
NRMEAS - LINHMT number of measurements processed 

Earth model specific data and initial vehicle position data are as 

follows : 

Symbol Units Common Description 

RE ft EDATA earth model radius at the equator 

OMEGE rad/sec EDATA earth angular rotation speed 
XMU ft3/sec2 EDATA earth model gravity parameter 

OLATD 
OLONG 
OHT ft 

FLAT - EDATA earth model flattening factor 

xJ2 - EDATA earth model oblate gravity parameter 

MUCOR launch point coordinates 
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Constants used for conversions are: 

Symbol Units Common Description 

CRAD de g/r ad CONST conversion from radians to degrees 
AGRAV ft/sec2 CONST gravity acceleration constant 
HRS EC sec/hr CONST conversion from hours to seconds 
PERCNT - CONST conversion from factor to percent 
XMRAD - CONST conversion from radians to millirads 

Radar site coordinates and atmospheric refraction correction data for 

each radar are specified by: 

Symbol Units Common 

RLAT 
RLONG :z: } RDRDAT 
RHT ft 
XNO - RDRDAT 
NRDR - RDRDAT 

Description 

radar site coordinates 

atmospheric refraction index 
number of radar sites used 

Values for initializing the Kalman filter error covariance matrix and 

setting process noise parameters error magnitudes are; 

Symbol 

R 
ER 
EV 
ETLT 
EAB 
EASF 
ERDR 
TAUT 
TAUA 
TAUS 
TAUR 

Units 

** 
ft 
ft/sec 
deg 
ft/sec2 - 
** 
sec 
sec 
sec 
sec 

Common 

NOISES 
APRIOR 
APRIOR 
APRIOR 
APRIOR 
APRIOR 
APRIOR 
FPARAM 
FPARAM 
FPARAM 
FPARAM 

Description 

measurement noise array elements 
initial position uncertainty 
initial velocity uncertainty 
initial platform tilt uncertainty 
initial accelerometer bias uncertain 
initial accelerometer scale factor 
initial radar measurement uncertain 
platform tilt process noise constant 
accelerometer bias noise constant 
accelerometer scale factor constant 
radar measurement noise constant 
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UT 
UA 
us 
UR 

deg FPARAM platform tilt process noise level 
ft/sec2 FPARAM accelerometer bias noise level 

- FPARAM accelerometer scale factor level 
** FPARAM radar measurement noise level 

** deg for azimuth and elevation, and ft for range. 
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C.4.1.3 INITIL Routine 

The INITIL routine initializes the states and error covariance matrix 

for the Kalman filter algorithm. 

position vector from the launch coordinates in BLOCK DATA. 

the transformation matrix from earth centered inertial (ECI) to BRI. This 

This routine computes the initial BRI 

Also, computed is 

matrix is used later in the RADAR measurement update routine. 

The initial, time zero, computations are described as: 

Symbol Units Common Description 

RBRI ft RSTATE initial BRI position vector 
VITO f t/sec RSTATE initial BRI velocity vector 
ABRI ft/sec2 RSTATE initial BRI acceleration vector 
CIBRI - RSTATE transform matrix from ECI to BRI 

The states, error covariance matrix, and U-D factored form of the error 

covariance matrix initialized in INITIL are as follows: 

Symbol Common Description 

XKM PREUP state vector prior to measurement update 
PKM PREUP error covariance matrix prior to update 
X PROPAG state vector between measurement updates 
U UDWORK U-D factorization of PKM 

The units for these arrays corresponds to those identified in Table C-1 for 

the state variables. 
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C.4.1.4 UDTIME Routine 

This routine propagates (integrates or time updates) the system errors 

defined by equation C-1. 

system F matrix in the subroutine SYSTEM. 

XPHIU and WGS are used. 

This is accomplished by first forming the linearized 

The U-D time update subroutines 

Referring to equation C-1, the following code symbols are defined. 

Math Symbol Units Subroutine Description 

- R'BR) RBRI ft UDTIME BRI position vector 

S g  + a, ANET ft/sec2 SYSTEM net acceleration vector 

ab XKM ft/sec2 UDTIME accelerometer bias error 

68 x VEC2 ft/sec2 UDTIME platform tilt induced error 
(elements 10-12 of XKM) 

[g],,,, kP VEC3 ft/sec2 UDTIME accelerometer scale factor 
induced error 

The linearized dynamics matrix, F, and the process noise matrices are 

communicated from the subroutine SYSTEM via common arrays as: 

Symbol Common Description 

F LINFMT 
Q NOISES 
G NOISES 

linearized dynamics matrix 
process noise level matrix 
process noise distribution matrix 

Units for these variables correspond to those identified in Table C - 1 .  
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C.4.1.5 RADAR routine 

This routine computes the state (see Table C-1) estimate updates based 

on the linearized Kalman filter U-D factored algorithm by processing the radar 

measurements. In the linearized algorithm, the filter corrections are based 

on small departures from the current estimates of the measurements. Using the 

equations in section C.2, estimates of azimuth, elevation and range for each 

radar are computed using the current state estimates of vehicle position and 

the location of the radar site. These estimates of the measurements are then 

differenced from the actual measurements to form the residual. The residual 

is then multiplied by the gain to obtain the correction to the state 

estimates. PA gain requires the computation of the linearized measurement 

matrix, H, which is effectively the gradient or direction to which the 

corrections are directed to the state elements. 

Referring to equations C-2 through C-5, the following code symbols are 

defined: 

Math Symbol Units Subroutine Description 

E'ER) RBRI ft UDTIME/RADAR vehicle position 
in BRI 

ECFcBR CBRIEF - RADAR transformation 
from BRI to ECF 

A AZHAT del3 RADAR 

AE DEL deg REFRAC 
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AP DRANGE ft REF'RAC range refraction 
correction 

E ELHAT deg RADAR 

P RNGHAT ft . RADAR 

radar elevation 
estimate 

radar range 
es t imate 

The following measurements are processed in the RADAR routine: 

Symbol Units Subroutine Description 

AZM deg GETDAT azimuth measurement 
EIM del3 GETDAT elevation measurement 
RNGM ft GETDAT range measurement 

To update the state estimates, the following are computed: 

Symbol Common Description 

H 
RH 
U 
PO 

SF 
SG 
RESID 
covz 

LINHMT 
UDWORK 
UDWORK 
UDWORK 

UDWORK 
UDWORK 
UDWORK 
UDWORK 

linearized measurement matrix 
azimuth, elevation or range row of H 
U-D factorization of error covariance matrix 
temporary storage for upper diagonal of error 
covariance matrix 
unused matrix in U-D routines 
unweighted Kalman gain vector 
measurement and estimate difference 
residual variance 

The units of these variables correspond to those indicated in Tables C-3 and 

c-4. 

The routine REF'RAC provides the corrections to elevation and range for 

atmospheric refraction. Routines UDMEAS and UD2COV accomplish the covariance 
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matrix update and conversion from U-D to covariance matrix form for output 

respectively. 

OUTPUT routine. 

The updates from each measurement are communicated to the 

Prior to the use of an update, or the completion of the measurement 

update, a test is made of the quality of the measurement. 

residual must be within a band of plus or minus 6 times the square-root of the 

measurement residual variance to be accepted. If this residual test fails and 

the state estimate update is bypassed. 

The measurement 
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C.4.1.6 ASSESS routine 

This routine uses the resulting estimates from the Kalman filter 

algorithm to compute estimates of the variables summarized in Table C-5. 

These variables are formed from combinations of the state elements and 

meteorological data, tabular functions of altitude, using the filter estimate 

of altitude. 

LASSOUT.DAT, for later processing by other NASA programs. 

The outputs from this routine are written to the output file, 
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C.4.1.7 OUTPUT routine 

This routine writes the output files for later processing. A quality 

assessment file, LFILOUT.DAT, is output. This file is later accessed by the 

plotting program PLTLFIL. 

residuals from which the quality of the filter's estimates are determined. 

Plotted are the filter estimates and measurement 

If the smooth flag ISMOOTH is initialized, then the files SREFIPT.DAT 

and SMOIPT.DAT are output. 

program RTSSMO discussed in the next section. 

These two files are required by the smoothing 
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C.4.2 RTSSMO Program 

The Rauch-Tung-Striebel smoothing algorithm reflects little about the 

system model or measurements processed. Its form and it's implementation 

discussed here is general and applicable to any linear or linearized problem 

definition. 

The program RTSSMO organization is illustrated in Figure C-2. Each of 

the routines shown, their function and equations implemented, will be 

discussed in turn in the subsequent subsections. 

mathematical notation and the symbology used in the FORTRAN code will also be 

presented. 

The correspondence of the 
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RTSINT 

1 1 RTSSMO I main 

BLOCK DATA program constants m 
a RTSIPT 

RTSPRP Q 

read input data to last 
measurement time from 
LFILTER 

REVERSE I c-) 
Figure C-2: RTSSMO Program Flow 
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C.4.2.1 RTSSMO Routine 

The main routine, RTSSMO, controls the program flow. It initializes 

arrays based on data contained in the BLOCK DATA routine, opens and reads data 

files in RTSIPT, finds the last time specified in BLOCK DATA and initializes 

the state variables and error covariances in RTSINT, propagates the state 

variables and error covariances back to a measurement time with subroutine 

RTSPRP, produces the output variables shown in Table C-3 in the ASSESS 

subroutine, and reverses the outputs to the normal forward time sequence in 

REVERSE. 

The program flow in controlled by specifying a maximum or beginning 

time. 

program continues the state and error covariance processing. 

processing, data is stored for later plotting. 

If the current time is greater than the zero time specified, the 

During the 

This routine reprocesses the results of the LFILTER program by reading 

the two files generated. 

the atmospheric dependent variables. 

It also reads the meteorological data for computing 

The input data files are: 

Data File Unit Number 

2 
3 
4 

Data File Name 

SMOIPT.DAT 
SREFIPT.DAT 
METDAT.DAT 

SMOIPT.DAT contains the filter states and covariances processed in the 

smoothing algorithm. 

attitude and attitude rate data. 

SREFIPT.DAT contains the reference IMU acceleration, 

METDAT.DAT contains the meteorological data 
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used for the atmospheric dependent variables computed. 

Four files are produced by RTSSMO. The output files written are: 

Data File Unit Number Data File Name 

SMOOUT.DAT 
SASSOUT.DAT 
SCRATCH.DAT 
NREFIPT.DAT 

SMOOUT.DAT contains state variable estimates and covariances for quality 

checks on the smoother's outputs. SASSOUT.DAT contains the output variables 

summarized in Table C-3. NREFIPT.DAT contains new reference inputs required 

for the filtering program based on the current filtering/smoothing processing 

cycle. 

time order of the data. 

SCRATCH.DAT is temporary storage for data prior to resequencing the 
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C.4.2.2 BLOCK DATA routine 

The BLOCK DATA routine contains data to support the program flow 

control, i.e. TMAX for the maximum (beginning) time. 

The following program control values are specified in BLOCK DATA. 

Symbol Units Common Description 

TIME sec TDATA current time after liftoff 
TMAX sec TDATA maximum time after liftoff 
TSAMP sec TDATA measurement sample time increment 
N - FILDAT number of dynamic and bias states 
NMEAS - FILDAT number of measurements processed 

Earth model specific data and initial vehicle position'data are as 

follows : 

Symbol Units Common Description 

RE ft EDATA earth model radius at the equator 

OMEGE rad/sec EDATA earth angular rotation speed 
XMU ft3/sec2 EDATA earth model gravity parameter 

OLATD 
OLONG 
OHT ft 

FLAT - EDATA earth model flattening factor 

xJ2 - EDATA earth model oblate gravity parameter 

LAUCOR launch point coordinates 

Constants used for conversions are: 

Symbol Units Common Description 

CRAD deg/rad CONST conversion from radians to degrees 
AGRAV ft/sec2 CONST gravity acceleration constant 
HRS EC sec/hr CONST conversion from hours to seconds 

XMRAD - CONST conversion from radians to millirads 
PERCNT - CONST conversion from factor to percent 
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C.4.2.3 RTSIPT routine 

This routine reads the two input files from the filter program which are 

sequential in time. This routine reads each of these files until the time 

searched for is located. The data in these files are then communicated via 

common to other parts of the program. 

The following filter output values are read in for each time point; 

Symbol Common Description 

XKM FILDAT state vector prior to measurement update 
PKM FILDAT error covariance matrix prior to update 
F FILDAT linear dynamics matrix 
Q FILDAT filter process noise matrix 

The units for these arrays corresponds to those identified in Table C-1 

The following reference values are read as passed on by the LFILTER program; 

Symbol Units Common Description 

ABRI ft/sec2 RSTATE BRI acceleration vector 
THTI deg RSTATE BRI attitudes ( roll, pitch & yaw ) 
OMEG deg/sec RSTATE BRI attitude rates 
RBRI ft RSTATE BRI position vector 
VBRI ft/sec RSTATE BRI velocity vector 
CIBRI - RSTATE transformation from ECI to BRI 
CBRIEF - RSTATE transformation from BRI to ECF 
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c.4.2.4 RTSINT routine 

If the time search for is the maximum (beginning) time, this routine is 

called. 

estimates and error covariances as specified by the algorithm summarized in 

Table C-2. 

The smoothing algorithm is then initialized with the filter’s state 

The following are initialized: 

Math Symbol Common Description 

&IN XKGN SMTHER state estimate at k given N points 
&+1 IN XKPlGN SMTHER state estimate at k+l given N points 
PklN PKGN SMTHER covariance at k given N points 
pk+lIN PKPlGN SMTHER covariance at K+1 given N points 
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C.4.2.5 RTSUPD routine 

This routine computes the state estimate and covariance updates as 

specified by the algorithm summarized in Table C-2. 
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C.4.2.6 RTSPRP routine 

This routine computes the smoothing gain matrix used to update the state 

estimates and covariances: 

Math Symbol 

PHI 
Ak AK 

Common Description 

SMTHER state transition matrix 
SMTHER smoother gain matrix at k 
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C.4.2.7 ASSESS routine 

This routine uses the resulting estimates from the smoothing algorithm 

to compute estimates of the variables summarized in Table C - 5 .  These 

variables are formed from combinations of the state elements and 

meteorological data, tabular functions of altitude, using the filter estimate 

of altitude. The outputs from this routine are written to the output file, 

SASSOUT.DAT, for later processing by other NASA programs. 
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D. Library Routines 

Three libraries of routines have been implemented to perform repeated 

functions for all the programs previously described. 

these routines. 

This appendix describes 

D.l ERTHM Library 

The ERTHM routines compute various quantities that are dependent on the 

earth model characteristics as follows: 

Routine Description 

COOR Computes the latitude, longitude and altitude from an earth 
centered earth fixed set of coordinates. 

ECPOS Computes the earth centered earth fixed set of coordinates 
from the latitude, longitude and altitude. 

AGRAV Computes the gravitational vector and partial derivative 
with respect to the earth centered earth fixed coordinates 
from those coordinates. 

CIEFMX Computes the earth centered inertial to earth centered earth 
fixed transformation matrix. 
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D.2 AXMAT Library 

This library contains auxiliary matrix operation routines applicable to 

the aerodynamic and body attitude computations. The routines are: 

Routine 

AXCBIQ 

AUXVAB 

AXCIBQ 

QMTRX 

PQOMEG 

CBIMXQ 

CBIMX 

E2QUAT 

QUAT2E 

TMATY 

TMATP 

Description 

Computes the partial derivative of the body to inertial 
transformation matrix with respect to the quaternion elements. 

Computes the partial derivative of total velocity, 
angle-of-attack, and side-slip with respect to the velocity 
components. 

Computes the partial derivative of the inertial to body 
transformation matrix with respect to the quaternion elements. 

Forms the dynamical derivative of the quaternion dynamics. 

Forms the partial derivative of the quaternion dynamics with 
respect to the body rates. 

Computes the partial derivatives of total velocity, 
angle-of-attack, and side-slip with respect to the quaternicn 
elements. 

Forms the body to inertial transformation matrix using 
quaternion elements. 

Forms the body to inertial transformation matrix using body 
attitude angles. 

Converts Euler angles into quaternion elements. 

Converts quaternion elements into Euler angles. 

Computes the transformation matrix based on a "yaw" rotation 
(rotation about the third axis). 

Computes the transformation matrix based on a "pitch" rotation 
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D.3 MLIB Library 

The MLIB routines perform various matrix operations as: 

Routine 

ADD 

SUBT 

MULT 

TRANS 

SMLT 

SWITCH 

SYMTRK 

OUTER 

INNER 

SKEW 

IMBED 

INV2X2 

1" 

INV3X3 

ZEROM 

CROSS 

Description 

Adds two compatible subscripted arrays, each up to two 
dimensions. 

Subtracts two compatible subscripted arrays, each up to 
two dimensions. 

Multiplies two compatible subscripted arrays. 

Transposes a two dimensional array (exchanges its rows 
and columns). 

Multiplies a subscripted array, up to two dimensions, by a 
scaler. 

Equates one array, up to two dimensions, with another of the 
same dimension. 

Symetricizes a square matrix. 

Forms the outer product of two vectors, yielding a matrix. 

Forms the inner product of two vectors, yielding a scaler. 

Forms a skew-symmetric matrix from a vector to perform an 
equivalent vector cross product. 

Imbeds a smaller matrix within a larger matrix. 

Inverts a square two by two matrix. 

Inverts a square "n" by "n" matrix. 

Inverts a square three by three matrix. 

Nulls the elements in a subscripted array with up to two 
dimensions. 

Forms a vector cross product, yielding a vector. 
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Appendix E 

Coordinate Frame Definitions 
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ITRUE EQUATOR1 

GRAVITY GRADIENT 

NAME: Boost reference coordinate system. 

ORIGIN: At the center of the earth. 

ORIENTATION 
AND DIRECTIONS: The ZPL -axis is parallel to the gravity gradient (Z) which 

passes through the launch site and is positive in the direction of 
gravity. The ZPL -axis is fixed at a specifically stated time. 
The XPL -axis is paralled to X which is along the launch site meridian 
and is positive northward. 
The YPL -axis is parallel to the Y' and completes a standard right- 
handed system; Le., positive east. 
The XPL - YPL plane is normal to the launch site gravity gradient 
vector. 

CHARACTERISTICS: Inertial, right-handed, Cartesian. 

Figure E.-1: Boost Reference Coordinate System 

170 

I 
I 
1 
I 
1 
1 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
1 



ROGERS ENGINEERING & ASSOCIATES 

v) 
0) 
v) c m 
v) .. m 
5 z 

171 

.. 
(v 
I 

w 



ROGERS ENGINEERING & ASSOCIATES 

E >. 

4 
a s 
u 
.d 

9 e 
h a 
0 

>. 
Y 

.. 
m 
I 

I 
1 

172 



ROGERS ENGINEERING & ASSOCIATES 

View Looking Forward 

Figure E.-4: Main Engine Gimbal Deflections 
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Figure E.-5: SRB Rock and Tilt Displacements 
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Orbiter FRL Z = 400 

Gimbal centers 
left and right engines 

Gimbal center 

Top view 

Figure E.-6: Main Engine Structural Deflections 
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